Statistical analysis of probability density functions for photometric redshifts through the KiDS-ESO-DR3 galaxies

被引:18
作者
Amaro, V. [1 ]
Cavuoti, S. [1 ,2 ,3 ]
Brescia, M. [2 ]
Vellucci, C. [4 ]
Longo, G. [1 ]
Bilicki, M. [5 ,6 ]
de Jong, J. T. A. [7 ]
Tortora, C. [7 ]
Radovich, M. [8 ]
Napolitano, N. R. [2 ]
Buddelmeijer, H. [5 ]
机构
[1] Univ Napoli Federico II, Dept Phys Sci, Via Cinthia 9, I-80126 Naples, Italy
[2] INAF, Astron Observ Capodimonte, Via Moiariello 16, I-80131 Naples, Italy
[3] INFN, Sect Naples, Via Cinthia 6, I-80126 Naples, Italy
[4] Univ Naples Federico II, DIETI, Via Claudio 21, I-80125 Naples, Italy
[5] Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands
[6] Natl Ctr Nucl Res, Div Astrophys, POB 447, PL-90950 Lodz, Poland
[7] Univ Groningen, Kapteyn Astron Inst, POB 800, NL-9700 AV Groningen, Netherlands
[8] INAF, Osservatorio Astron Padova, Via Osservatorio 5, I-35122 Padua, Italy
基金
欧盟地平线“2020”;
关键词
methods: data analysis; methods: statistical; galaxies: distances and redshifts; galaxies: photometry; CALIBRATION; FORECASTS;
D O I
10.1093/mnras/sty2922
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Despite the high accuracy of photometric redshifts (zphot) derived using machine learning (ML) methods, the quantification of errors through reliable and accurate probability density functions (PDFs) is still an open problem. First, because it is difficult to accurately assess the contribution from different sources of errors, namely internal to the method itself and from the photometric features defining the available parameter space. Secondly, because the problem of defining a robust statistical method, always able to quantify and qualify the PDF estimation validity, is still an open issue. We present a comparison among PDFs obtained using three different methods on the same data set: two ML techniques, METAPHOR (Machine-learning Estimation Tool for Accurate PHOtometric Redshifts) and ANNz2 , plus the spectral energy distribution template-fitting method, BPZ (Bayesian photometric redshift). The photometric data were extracted from the Kilo Degree Survey ESO Data Release 3, while the spectroscopy was obtained from the Galaxy and Mass Assembly Data Release 2. The statistical evaluation of both individual and stacked PDFs was done through quantitative and qualitative estimators, including a dummy PDF, useful to verify whether different statistical estimators can correctly assess PDF quality. We conclude that, in order to quantify the reliability and accuracy of any zphot PDF method, a combined set of statistical estimators is required.
引用
收藏
页码:3116 / 3134
页数:19
相关论文
共 67 条
[1]   A comparison of six photometric redshift methods applied to 1.5 million luminous red galaxies [J].
Abdalla, F. B. ;
Banerji, M. ;
Lahav, O. ;
Rashkov, V. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2011, 417 (03) :1891-1903
[2]   THE TENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT [J].
Ahn, Christopher P. ;
Alexandroff, Rachael ;
Allende Prieto, Carlos ;
Anders, Friedrich ;
Anderson, Scott F. ;
Anderton, Timothy ;
Andrews, Brett H. ;
Aubourg, Eric ;
Bailey, Stephen ;
Bastien, Fabienne A. ;
Bautista, Julian E. ;
Beers, Timothy C. ;
Beifiori, Alessandra ;
Bender, Chad F. ;
Berlind, Andreas A. ;
Beutler, Florian ;
Bhardwaj, Vaishali ;
Bird, Jonathan C. ;
Bizyaev, Dmitry ;
Blake, Cullen H. ;
Blanton, Michael R. ;
Blomqvist, Michael ;
Bochanski, John J. ;
Bolton, Adam S. ;
Borde, Arnaud ;
Bovy, Jo ;
Bradley, Alaina Shelden ;
Brandt, W. N. ;
Brauer, Dorothee ;
Brinkmann, J. ;
Brownstein, Joel R. ;
Busca, Nicolas G. ;
Carithers, William ;
Carlberg, Joleen K. ;
Carnero, Aurelio R. ;
Carr, Michael A. ;
Chiappini, Cristina ;
Chojnowski, S. Drew ;
Chuang, Chia-Hsun ;
Comparat, Johan ;
Crepp, Justin R. ;
Cristiani, Stefano ;
Croft, Rupert A. C. ;
Cuesta, Antonio J. ;
Cunha, Katia ;
da Costa, Luiz N. ;
Dawson, Kyle S. ;
De Lee, Nathan ;
Dean, Janice D. R. ;
Delubac, Timothee .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2014, 211 (02)
[3]  
Annis J. T., 2013, AAS M, V221
[4]   CLASH-VLT: Environment-driven evolution of galaxies in the z=0.209 cluster Abell 209 [J].
Annunziatella, M. ;
Mercurio, A. ;
Biviano, A. ;
Girardi, M. ;
Nonino, M. ;
Balestra, I. ;
Rosati, P. ;
Caminha, G. Bartosch ;
Brescia, M. ;
Gobat, R. ;
Grillo, C. ;
Lombardi, M. ;
Sartoris, B. ;
De Lucia, G. ;
Demarco, R. ;
Frye, B. ;
Fritz, A. ;
Moustakas, J. ;
Scodeggio, M. ;
Kuchner, U. ;
Maier, C. ;
Ziegler, B. .
ASTRONOMY & ASTROPHYSICS, 2016, 585
[5]   Submegaparsec individual photometric redshift estimation from cosmic web constraints [J].
Aragon-Calvo, M. A. ;
van de Weygaert, Rien ;
Jones, Bernard J. T. ;
Mobasher, Bahram .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 454 (01) :463-477
[6]   Measuring and modelling the redshift evolution of clustering:: the Hubble Deep Field North [J].
Arnouts, S ;
Cristiani, S ;
Moscardini, L ;
Matarrese, S ;
Lucchin, F ;
Fontana, A ;
Giallongo, E .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1999, 310 (02) :540-556
[7]   Robust machine learning applied to astronomical data sets.: III.: Probabilistic photometric redshifts for galaxies and quasars in the SDSS and GALEX [J].
Ball, Nicholas M. ;
Brunner, Robert J. ;
Myers, Adam D. ;
Strand, Natalie E. ;
Alberts, Stacey L. ;
Tcheng, David .
ASTROPHYSICAL JOURNAL, 2008, 683 (01) :12-21
[8]   Mixture EMOS model for calibrating ensemble forecasts of wind speed [J].
Baran, S. ;
Lerch, S. .
ENVIRONMETRICS, 2016, 27 (02) :116-130
[9]  
Baum W. A., 1962, P IAU S, V15, P390
[10]   Bayesian photometric redshift estimation [J].
Benítez, N .
ASTROPHYSICAL JOURNAL, 2000, 536 (02) :571-583