The objective of this study was to assess the antibacterial activity and inhibition of biofilm formation of silver nanoparticles (AgNPs) against Escherichia coli (MG16SS), Bacillus subtilis, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, and Janthinobacterium lividum. The AgNPs utilized in this study were prepared through one-pot microwave-assisted syntheses guided by principles of green chemistry. The AgNPs were synthesized in three different schemes by reducing Ag+ ions (from AgNO3) with reducing agents dextrose, arabinose, and soluble starch. Formation of AgNPs occurred in less than 15 min, and nanoparticles had diameters of 30 nm or less. Successful synthesis of AgNPs was confirmed using multiple orthogonal approaches, including UV-visible spectroscopy, fluorescence emission spectroscopy, powder X-ray diffraction, and transmission electron microscopy, while size analysis was gathered from transmission electron microscopy images and dynamic light scattering. All AgNPs prepared in this study exhibited antibacterial effects on a variety of organisms as determined by a well diffusion assay with no antibacterial effects observed in the control wells.