Complexion-mediated martensitic phase transformation in Titanium

被引:120
作者
Zhang, J. [1 ,2 ]
Tasan, C. C. [3 ]
Lai, M. J. [1 ]
Dippel, A. -C. [4 ]
Raabe, D. [1 ]
机构
[1] Max Planck Inst Eisenforsch GmbH, Max Planck Str 1, D-40237 Dusseldorf, Germany
[2] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
[3] MIT, Dept Mat Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[4] DESY, Notkestr 85, D-22607 Hamburg, Germany
基金
欧洲研究理事会;
关键词
GUM METAL; OMEGA-PHASE; GRAIN-BOUNDARIES; ALLOYS; SUPERELASTICITY; DEFORMATION; SCIENCE; ALUMINA;
D O I
10.1038/ncomms14210
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The most efficient way to tune microstructures and mechanical properties of metallic alloys lies in designing and using athermal phase transformations. Examples are shape memory alloys and high strength steels, which together stand for 1,500 million tons annual production. In these materials, martensite formation and mechanical twinning are tuned via composition adjustment for realizing complex microstructures and beneficial mechanical properties. Here we report a new phase transformation that has the potential to widen the application window of Ti alloys, the most important structural material in aerospace design, by nanostructuring them via complexion-mediated transformation. This is a reversible martensitic transformation mechanism that leads to a final nanolaminate structure of alpha" (orthorhombic) martensite bounded with planar complexions of athermal omega (a-omega, hexagonal). Both phases are crystallographically related to the parent beta (BCC) matrix. As expected from a planar complexion, the a-omega is stable only at the hetero-interface.
引用
收藏
页数:8
相关论文
共 42 条
[21]  
Leyens Christoph., 2006, Titanium and Titanium Alloys: Fundamentals and Applications
[22]   Total pattern fitting for the combined size-strain-stress-texture determination in thin film diffraction [J].
Lutterotti, Luca .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2010, 268 (3-4) :334-340
[23]   Mechanics of superelasticity in Ti-30Nb-(8-10)Ta-5Zr alloy [J].
Obbard, E. G. ;
Hao, Y. L. ;
Akahori, T. ;
Talling, R. J. ;
Niinomi, M. ;
Dye, D. ;
Yang, R. .
ACTA MATERIALIA, 2010, 58 (10) :3557-3567
[24]   On dislocation involvement in Ti-Nb gum metal plasticity [J].
Plancher, E. ;
Tasan, C. C. ;
Sandloebes, S. ;
Raabe, D. .
SCRIPTA MATERIALIA, 2013, 68 (10) :805-808
[25]   Theory-guided bottom-up design of β-titanium alloys as biomaterials based on first principles calculations:: Theory and experiments [J].
Raabe, D. ;
Sander, B. ;
Friak, M. ;
Ma, D. ;
Neugebauer, J. .
ACTA MATERIALIA, 2007, 55 (13) :4475-4487
[26]   Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism [J].
Saito, T ;
Furuta, T ;
Hwang, JH ;
Kuramoto, S ;
Nishino, K ;
Suzuki, N ;
Chen, R ;
Yamada, A ;
Ito, K ;
Seno, Y ;
Nonaka, T ;
Ikehata, H ;
Nagasako, N ;
Iwamoto, C ;
Ikuhara, Y ;
Sakuma, T .
SCIENCE, 2003, 300 (5618) :464-467
[27]  
Schryvers D., 1990, Mater. Sci. Forum, V56-58, P329, DOI [10.4028/www.scientific.net/MSF.56-58.329, DOI 10.4028/WWW.SCIENTIFIC.NET/MSF.56-58.329]
[28]   OMEGA-PHASE IN MATERIALS [J].
SIKKA, SK ;
VOHRA, YK ;
CHIDAMBARAM, R .
PROGRESS IN MATERIALS SCIENCE, 1982, 27 (3-4) :245-310
[29]   Lattice modulation and superelasticity in oxygen-added β-Ti alloys [J].
Tahara, Masaki ;
Kim, Hee Young ;
Inamura, Tomonari ;
Hosoda, Hideki ;
Miyazaki, Shuichi .
ACTA MATERIALIA, 2011, 59 (16) :6208-6218
[30]   Low Young's modulus in Ti-Nb-Ta-Zr-O alloys: Cold working and oxygen effects [J].
Tane, M. ;
Nakano, T. ;
Kuramoto, S. ;
Hara, M. ;
Niinomi, M. ;
Takesue, N. ;
Yano, T. ;
Nakajima, H. .
ACTA MATERIALIA, 2011, 59 (18) :6975-6988