A decade-spanning high-resolution asynchronous optical sampling terahertz time-domain and frequency comb spectrometer

被引:27
作者
Good, Jacob T. [1 ]
Holland, Daniel B. [1 ,2 ]
Finneran, Ian A. [1 ]
Carroll, P. Brandon [1 ]
Kelley, Matthew J. [1 ,3 ]
Blake, Geoffrey A. [1 ,4 ]
机构
[1] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA
[2] Univ So Calif, Translat Imaging Ctr, Los Angeles, CA 90089 USA
[3] Newport Corp, TAC, Irvine, CA 92606 USA
[4] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
THZ; SUBMILLIMETER; SPECTROSCOPY; ENHANCEMENT; GENERATION; MICROWAVE; RADIATION; WATER; GAS;
D O I
10.1063/1.4932567
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We present the design and capabilities of a high-resolution, decade-spanning ASynchronous OPtical Sampling (ASOPS)-based TeraHertz Time-Domain Spectroscopy (THz-TDS) instrument. Our system employs dual mode-locked femtosecond Ti: Sapphire oscillators with repetition rates offset locked at 100 Hz via a Phase-Locked Loop (PLL) operating at the 60th harmonic of the similar to 80 MHz oscillator repetition rates. The respective time delays of the individual laser pulses are scanned across a 12.5 ns window in a laboratory scan time of 10 ms, supporting a time delay resolution as fine as 15.6 fs. The repetition rate of the pump oscillator is synchronized to a Rb frequency standard via a PLL operating at the 12th harmonic of the oscillator repetition rate, achieving milliHertz (mHz) stability. We characterize the timing jitter of the system using an air-spaced etalon, an optical cross correlator, and the phase noise spectrum of the PLL. Spectroscopic applications of ASOPS-THz-TDS are demonstrated by measuring water vapor absorption lines from 0.55 to 3.35 THz and acetonitrile absorption lines from 0.13 to 1.39 THz in a short pathlength gas cell. With 70 min of data acquisition, a 50 dB signal-to-noise ratio is achieved. The achieved root-mean-square deviation is 14.6 MHz, with a mean deviation of 11.6 MHz, for the measured water line center frequencies as compared to the JPL molecular spectroscopy database. Further, with the same instrument and data acquisition hardware, we use the ability to control the repetition rate of the pump oscillator to enable THz frequency comb spectroscopy (THz-FCS). Here, a frequency comb with a tooth width of 5 MHz is generated and used to fully resolve the pure rotational spectrum of acetonitrile with Doppler-limited precision. The oscillator repetition rate stability achieved by our PLL lock circuits enables sub-MHz tooth width generation, if desired. This instrument provides unprecedented decade-spanning, tunable resolution, from 80 MHz down to sub-MHz, and heralds a new generation of gas-phase spectroscopic tools in the THz region. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:10
相关论文
共 34 条
[1]   The structure and dynamics of carbon dioxide and water containing ices investigated via THz and mid-IR spectroscopy [J].
Allodi, Marco A. ;
Ioppolo, Sergio ;
Kelley, Matthew J. ;
McGuire, Brett A. ;
Blake, Geoffrey A. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (08) :3442-3455
[2]   Frequency-Comb-Assisted Terahertz Quantum Cascade Laser Spectroscopy [J].
Bartalini, S. ;
Consolino, L. ;
Cancio, P. ;
De Natale, P. ;
Bartolini, P. ;
Taschin, A. ;
De Pas, M. ;
Beere, H. ;
Ritchie, D. ;
Vitiello, M. S. ;
Torre, R. .
PHYSICAL REVIEW X, 2014, 4 (02)
[3]   Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling [J].
Bartels, A. ;
Cerna, R. ;
Kistner, C. ;
Thoma, A. ;
Hudert, F. ;
Janke, C. ;
Dekorsy, T. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2007, 78 (03)
[4]   Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials [J].
Cunningham, Paul D. ;
Valdes, Nestor N. ;
Vallejo, Felipe A. ;
Hayden, L. Michael ;
Polishak, Brent ;
Zhou, Xing-Hua ;
Luo, Jingdong ;
Jen, Alex K. -Y. ;
Williams, Jarrod C. ;
Twieg, Robert J. .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (04)
[5]   Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb [J].
Diddams, SA ;
Jones, DJ ;
Ye, J ;
Cundiff, ST ;
Hall, JL ;
Ranka, JK ;
Windeler, RS ;
Holzwarth, R ;
Udem, T ;
Hänsch, TW .
PHYSICAL REVIEW LETTERS, 2000, 84 (22) :5102-5105
[6]   Optimum excitation conditions for the generation of high-electric-field terahertz radiation from an oscillator-driven photoconductive device [J].
Dreyhaupt, A ;
Winnerl, S ;
Helm, M ;
Dekorsy, T .
OPTICS LETTERS, 2006, 31 (10) :1546-1548
[7]   Application of cascaded frequency multiplication to molecular spectroscopy [J].
Drouin, BJ ;
Maiwald, FW ;
Pearson, JC .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2005, 76 (09)
[8]   PUMP PROBE METHOD FOR FAST ANALYSIS OF VISIBLE SPECTRAL SIGNATURES UTILIZING ASYNCHRONOUS OPTICAL-SAMPLING [J].
ELZINGA, PA ;
KNEISLER, RJ ;
LYTLE, FE ;
JIANG, Y ;
KING, GB ;
LAURENDEAU, NM .
APPLIED OPTICS, 1987, 26 (19) :4303-4309
[9]   Terahertz Spectroscopic Analysis of Peptides and Proteins [J].
Falconer, Robert J. ;
Markelz, Andrea G. .
JOURNAL OF INFRARED MILLIMETER AND TERAHERTZ WAVES, 2012, 33 (10) :973-988
[10]   Decade-Spanning High-Precision Terahertz Frequency Comb [J].
Finneran, Ian A. ;
Good, Jacob T. ;
Holland, Daniel B. ;
Carroll, P. Brandon ;
Allodi, Marco A. ;
Blake, Geoffrey A. .
PHYSICAL REVIEW LETTERS, 2015, 114 (16)