THE LIMITED MEMORY CONJUGATE GRADIENT METHOD

被引:84
作者
Hager, William W. [1 ]
Zhang, Hongchao [2 ]
机构
[1] Univ Florida, Dept Math, Gainesville, FL 32611 USA
[2] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
基金
美国国家科学基金会;
关键词
nonlinear conjugate gradients; CG DESCENT; unconstrained optimization; limited memory; BFGS; limited memory BFGS; L-BFGS; reduced Hessian method; L-RHR; adaptive method; CONVERGENCE CONDITIONS; ALGORITHMS; DESCENT;
D O I
10.1137/120898097
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In theory, the successive gradients generated by the conjugate gradient method applied to a quadratic should be orthogonal. However, for some ill-conditioned problems, orthogonality is quickly lost due to rounding errors, and convergence is much slower than expected. A limited memory version of the nonlinear conjugate gradient method is developed. The memory is used to both detect the loss of orthogonality and to restore orthogonality. An implementation of the algorithm is presented based on the CG_DESCENT nonlinear conjugate gradient method. Limited memory CG_DESCENT (L-CG_DESCENT) possesses a global convergence property similar to that of the memoryless algorithm but has much better practical performance. Numerical comparisons to the limited memory BFGS method (L-BFGS) are given using the CUTEr test problems.
引用
收藏
页码:2150 / 2168
页数:19
相关论文
共 28 条
[11]   Reduced-Hessian quasi-Newton methods for unconstrained optimization [J].
Gill, PE ;
Leonard, MW .
SIAM JOURNAL ON OPTIMIZATION, 2001, 12 (01) :209-237
[12]  
Golub GH., 1989, MATRIX COMPUTATIONS, DOI DOI 10.56021/9781421407944
[13]  
Hager W.W., 2006, Pac. J. Optim., V2, P35
[14]   Algorithm 851: CG DESCENT, a conjugate gradient method with guaranteed descent [J].
Hager, WW ;
Zhang, HC .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2006, 32 (01) :113-137
[15]   A new conjugate gradient method with guaranteed descent and an efficient line search [J].
Hager, WW ;
Zhang, HC .
SIAM JOURNAL ON OPTIMIZATION, 2005, 16 (01) :170-192
[16]   ON THE LIMITED MEMORY BFGS METHOD FOR LARGE-SCALE OPTIMIZATION [J].
LIU, DC ;
NOCEDAL, J .
MATHEMATICAL PROGRAMMING, 1989, 45 (03) :503-528
[17]  
Luenberger DG, 2016, INT SER OPER RES MAN, V228, P1, DOI 10.1007/978-3-319-18842-3
[18]   LINE SEARCH ALGORITHMS WITH GUARANTEED SUFFICIENT DECREASE [J].
MORE, JJ ;
THUENTE, DJ .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1994, 20 (03) :286-307
[19]  
NOCEDAL J, 1980, MATH COMPUT, V35, P773, DOI 10.1090/S0025-5718-1980-0572855-7
[20]  
Nocedal J., 1999, Numerical optimization