L(p, 2, 1)-labeling of the infinite regular trees

被引:1
|
作者
Duan, Ziming [1 ]
Miao, Lianying [1 ]
Wang, Cuiqi [1 ]
Miao, Zhengke [2 ]
机构
[1] China Univ Min & Technol, Coll Sci, Xuzhou 221116, Peoples R China
[2] Jiangsu Normal Univ, Sch Math Sci, Xuzhou 221116, Peoples R China
关键词
L(p; 2; 1)-labeling; Infinite regular tree; Distance constrained labeling; LABELING GRAPHS; DISTANCE-2; ASSIGNMENT;
D O I
10.1016/j.disc.2013.06.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An L(p, q, r)-labeling of a graph G is defined as a function f from the vertex set V(G) into the nonnegative integers such that for any two vertices x, y, [f(x) - f(y)vertical bar >= p if d(x, y) = 1, vertical bar f(x) - f(y)vertical bar >= q if d(x, y) = 2 and vertical bar f(x) - f(y)vertical bar >= r if d(x, y) = 3, where d(x, y) is the distance between x and y in G. The L(p, q, r)-labeling number of G is the smallest number k such that G has an L(p, q, r)-labeling with k = max{f(x): x is an element of V(G)}. In this paper, we obtain all the L(p, 2, 1)-labeling numbers of the infinite D-regular trees T-infinity(D) for p >= 2 and D >= 3. In all cases, we also construct an optimal L(p, 2, 1)-labeling of T-infinity(D). (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:2330 / 2336
页数:7
相关论文
共 50 条
  • [31] L(p, q)-labeling of a graph embeddable on the torus
    Ma, Dengju
    DISCRETE APPLIED MATHEMATICS, 2014, 173 : 70 - 76
  • [32] On Irreducible No-Hole L(2,1)-Coloring of Trees
    Laskar, Renu C.
    Matthews, Gretchen L.
    Novick, Beth
    Villalpando, John
    NETWORKS, 2009, 53 (02) : 206 - 211
  • [33] L(h, 1, 1)-labeling of outerplanar graphs
    Calamoneri, Tiziana
    Fusco, Emanuele G.
    Tan, Richard B.
    Vocca, Paola
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2009, 69 (02) : 307 - 321
  • [34] Gibbs Measures Over Locally Tree-Like Graphs and Percolative Entropy Over Infinite Regular Trees
    Tim Austin
    Moumanti Podder
    Journal of Statistical Physics, 2018, 170 : 932 - 951
  • [35] Gibbs Measures Over Locally Tree-Like Graphs and Percolative Entropy Over Infinite Regular Trees
    Austin, Tim
    Podder, Moumanti
    JOURNAL OF STATISTICAL PHYSICS, 2018, 170 (05) : 932 - 951
  • [36] ON CIRCULAR-L(2,1)-EDGE-LABELING OF GRAPHS
    Lin, Wensong
    Wu, Jianzhuan
    TAIWANESE JOURNAL OF MATHEMATICS, 2012, 16 (06): : 2063 - 2075
  • [37] Path covering number and L(2,1)-labeling number of graphs
    Lu, Changhong
    Zhou, Qing
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (13-14) : 2062 - 2074
  • [38] L(2,1)-Labeling Halin Graphs with Maximum Degree Eight
    Qiu, Haizhen
    Che, Yushi
    Wang, Yiqiao
    SYMMETRY-BASEL, 2023, 15 (01):
  • [39] L(p, q)-labeling of planar graphs with small girth
    Dong, Wei
    DISCRETE APPLIED MATHEMATICS, 2020, 284 : 592 - 601
  • [40] The L(h, 1, 1)-labelling problem for trees
    King, Deborah
    Ras, Charl J.
    Zhou, Sanming
    EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (05) : 1295 - 1306