Linear quantum feedback networks

被引:75
作者
Gough, J. E. [1 ]
Gohm, R. [1 ]
Yanagisawa, M. [2 ]
机构
[1] Aberystwyth Univ, Inst Math & Phys Sci, Ceredigion SY23 3BZ, Wales
[2] Australian Natl Univ, Dept Engn, Canberra, ACT 0200, Australia
来源
PHYSICAL REVIEW A | 2008年 / 78卷 / 06期
关键词
feedback; Markov processes; oscillators; quantum optics; quantum theory;
D O I
10.1103/PhysRevA.78.062104
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The mathematical theory of quantum feedback networks has recently been developed [J. Gough and M. R. James, e-print arXiv:0804.3442v2] for general open quantum dynamical systems interacting with bosonic input fields. In this article we show, for the special case of linear dynamical Markovian systems with instantaneous feedback connections, that the transfer functions can be deduced and agree with the algebraic rules obtained in the nonlinear case. Using these rules, we derive the transfer functions for linear quantum systems in series, in cascade, and in feedback arrangements mediated by beam splitter devices.
引用
收藏
页数:11
相关论文
共 21 条
[1]   Suppression of classic and quantum radiation pressure noise by electro-optic feedback [J].
Buchler, BC ;
Gray, MB ;
Shaddock, DA ;
Ralph, TC ;
McClelland, DE .
OPTICS LETTERS, 1999, 24 (04) :259-261
[2]  
Gardiner C.W., 2000, QUANTUM NOISE HDB MA
[3]   DRIVING A QUANTUM SYSTEM WITH THE OUTPUT FIELD FROM ANOTHER DRIVEN QUANTUM SYSTEM [J].
GARDINER, CW .
PHYSICAL REVIEW LETTERS, 1993, 70 (15) :2269-2272
[4]  
GOUGH J, COMMUN MATH IN PRESS
[5]  
GOUGH J, ARXIV07070048V1, P31602
[6]   Quantum Stratonovich calculus and the quantum Wong-Zakai theorem [J].
Gough, John .
JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (11)
[7]  
Halmos P. R., 1982, HILBERT SPACE PROBLE
[8]  
Helson H., 1964, LECT INVARIANT SUBSP
[9]  
Hoffman K., 1988, BANACH SPACES ANAL F
[10]   QUANTUM ITOS FORMULA AND STOCHASTIC EVOLUTIONS [J].
HUDSON, RL ;
PARTHASARATHY, KR .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 93 (03) :301-323