Long-Time Asymptotics for the Nonlocal MKdV Equation

被引:32
作者
He, Feng-Jing [1 ]
Fan, En-Gui [1 ]
Xu, Jian [2 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[2] Univ Shanghai Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China
基金
美国国家科学基金会;
关键词
nonlocal mKdV equation; Riemann-Hilbert problem; Deift-Zhou nonlinear steepest-descent; long-time asymptotics; NONLINEAR SCHRODINGER-EQUATION; INVERSE SCATTERING TRANSFORM; RIEMANN-HILBERT PROBLEMS; STEEPEST DESCENT METHOD; DE-VRIES EQUATION;
D O I
10.1088/0253-6102/71/5/475
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we study the Cauchy problem with decaying initial data for the nonlocal modified Korteweg-de Vries equation (nonlocal mKdV) q(t) (x, t)+q(xxx)(x, t)-6q(x, t)q (-x, -t)q(x)(x, t) = 0, which can be viewed as a generalization of the local classical mKdV equation. We first formulate the Riemann Hilbert problem associated with the Cauchy problem of the nonlocal mKdV equation. Then we apply the Deift-Zhou nonlinear steepest-descent method to analyze the long-time asymptotics for the solution of the nonlocal mKdV equation. In contrast with the classical mKdV equation, we find some new and different results on long-time asymptotics for the nonlocal mKdV equation and some additional assumptions about the scattering data are made in our main results.
引用
收藏
页码:475 / 488
页数:14
相关论文
共 32 条
[1]   Integrable Nonlocal Nonlinear Equations [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
STUDIES IN APPLIED MATHEMATICS, 2017, 139 (01) :7-59
[2]   Inverse scattering transform for the integrable nonlocal nonlinear Schrodinger equation [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
NONLINEARITY, 2016, 29 (03) :915-946
[3]   Integrable Nonlocal Nonlinear Schrodinger Equation [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
PHYSICAL REVIEW LETTERS, 2013, 110 (06)
[4]  
ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
[5]  
[Anonymous], 2007, Classics in Mathematics
[6]  
[Anonymous], 1991, SOLITONS NONLINEAR E
[7]  
Beals R., 1987, COMMUN PURE APPL MAT, V37, P39
[8]  
Beals R.R., 1988, Direct and inverse scattering on the line, V28
[9]   Long-time asymptotics for the pure radiation solution of the Sine-Gordon equation [J].
Cheng, PJ ;
Venakides, S ;
Zhou, X .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1999, 24 (7-8) :1195-1262
[10]   LONG-TIME ASYMPTOTICS FOR THE CAMASSA-HOLM EQUATION [J].
De Monvel, Anne Boutet ;
Kostenko, Aleksey ;
Shepelsky, Dmitry ;
Teschl, Gerald .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2009, 41 (04) :1559-1588