Machine Learning Algorithms Applied to Telemetry Data of SCD-2 Brazilian Satellite

被引:0
|
作者
Tavares, Isabela [1 ]
Oliveira, Junia Maisa [2 ]
Teixeira, Andre Ferreira [3 ]
Pereira, Marconi de Arruda [1 ]
Kakitani, Marcos Tomio [1 ]
Nogueira, Jose Marcos [2 ]
机构
[1] Univ Fed Sao Joao del Rei, Ouro Branco, Brazil
[2] Univ Fed Minas Gerais, Belo Horizonte, MG, Brazil
[3] Univ Fed Santa Catarina, Florianopolis, SC, Brazil
关键词
machine learning; satellite; telemetry data; supervised learning; anomaly detection; SCD2;
D O I
10.1145/3545250.3560847
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
With the advancement of information technologies, big data and data storage and processing capacity, there is an increase in studies on machine learning in different contexts, especially in the spatial context. Specifically talking about artificial satellites, machine learning algorithms can be applied for different purposes, for example to identify the satellite's operating conditions and to predict undesirable situations. The work calculated the performance of six supervised machine learning algorithms in the analysis of telemetry data from the Brazilian satellite SCD2. Five experiments were performed for each supervised machine learning algorithm. To evaluate the algorithms, the following metrics were used: mean squared error (RMSE), coefficient of determination (R2) and mean absolute error (MAE). The Support Vector Machine (SVM) and Bagging Regressor (BR) algorithms obtained better results in the evaluation.
引用
收藏
页码:50 / 57
页数:8
相关论文
共 50 条
  • [31] Big data algorithms beyond machine learning
    Mnich M.
    KI - Kunstliche Intelligenz, 2018, 32 (01): : 9 - 17
  • [32] A Comparison of Machine Learning Algorithms Applied to American Legislature Polarization
    Mersy, Gabriel
    Santore, Vincent
    Rand, Isaac
    Kleinman, Corrine
    Wilson, Grant
    Bonsall, Jason
    Edwards, Tyler
    2020 IEEE 21ST INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION FOR DATA SCIENCE (IRI 2020), 2020, : 451 - 456
  • [33] A comparison of machine learning algorithms applied to hand gesture recognition
    Trigueiros, Paulo
    Ribeiro, Fernando
    Reis, Luis Paulo
    7TH IBERIAN CONFERENCE ON INFORMATION SYSTEMS AND TECHNOLOGIES (CISTI 2012), 2012,
  • [34] A Systematic Mapping on Machine Learning Algorithms and Gamification Applied to Education
    Garcia da Luz, Vinicius Schultz
    Gueiber, Ezequiel
    Matos, Simone Nasser
    Borges, Helyane Bronoski
    dos Santos Junior, Guatacara
    Lopes, Rui Pedro
    CSEDU: PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED EDUCATION - VOL 2, 2021, : 353 - 361
  • [35] A performance evaluation of machine learning algorithms applied to multilevel converters
    Hindi, Alqasem
    Ha, Joseph
    Filho, Faete
    Smith, Raymond L., III
    SOUTHEASTCON 2023, 2023, : 281 - 286
  • [36] Machine learning Algorithms applied to Genetic Promoter Sequences Recognition
    Guzman-Ruiz, Omar
    Mejia-Lavalle, Manuel
    Martinez, Alicia
    Hernandez, Yasmin
    2020 INTERNATIONAL CONFERENCE ON MECHATRONICS, ELECTRONICS AND AUTOMOTIVE ENGINEERING (ICMEAE 2020), 2020, : 47 - 51
  • [37] Machine Learning Algorithms Applied to Identify Microbial Species by Their Motility
    Riekeles, Max
    Schirmack, Janosch
    Schulze-Makuch, Dirk
    LIFE-BASEL, 2021, 11 (01): : 1 - 13
  • [38] A comparison of machine learning algorithms applied to hand gesture recognition
    Trigueiros, Paulo
    Ribeiro, Fernando
    Reis, Luis Paulo
    SISTEMAS Y TECNOLOGIAS DE INFORMACION, VOLS 1 AND 2, 2012, : 41 - +
  • [39] Machine Learning Algorithms for Satellite Image Classification Using Google Earth Engine and Landsat Satellite Data: Morocco Case Study
    Ouchra, Hafsa
    Belangour, Abdessamad
    Erraissi, Allae
    IEEE ACCESS, 2023, 11 : 71127 - 71142
  • [40] GalaxAI: Machine learning toolbox for interpretable analysis of spacecraft telemetry data
    Kostovska, Ana
    Petkovic, Matej
    Stepisnik, Tomaz
    Lucas, Luke
    Finn, Timothy
    Martinez-Heras, Jose
    Panov, Pance
    Dzeroski, Saso
    Donati, Alessandro
    Simidjievski, Nikola
    Kocev, Dragi
    8TH IEEE INTERNATIONAL CONFERENCE ON SPACE MISSION CHALLENGES FOR INFORMATION TECHNOLOGY (SMC-IT 2021), 2021, : 44 - 52