Multi-User Regularized Zero-Forcing Beamforming

被引:51
作者
Nguyen, Long D. [1 ,2 ]
Hoang Duong Tuan [3 ]
Duong, Trung Q. [1 ]
Poor, H. Vincent [4 ]
机构
[1] Queens Univ, Belfast BT7 1NN, Antrim, North Ireland
[2] Duy Tan Univ, Inst Res & Dev, Da Nang 550000, Vietnam
[3] Univ Technol Sydney, Sch Elect & Data Engn, Sydney, NSW 2007, Australia
[4] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
基金
澳大利亚研究理事会; 美国国家科学基金会;
关键词
Multi-antenna communications; regularized zero-forcing beamforming; nonconvex optimization algorithms; MASSIVE MIMO; GENERALIZED DESIGN; CHANNEL INVERSION; DOWNLINK; OPTIMIZATION; 5G;
D O I
10.1109/TSP.2019.2905833
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Regularized zero-forcing beamforming (RZFB) is an interesting class of linear signal processing problems, which is very attractive for use in large-scale communication networks due its simple visualization as a straightforward extension of the well-accepted zero-forcing beamforming (ZFB). However, unlike ZFB, which is multi-user interference free, RZFB must manage multi-user interference to achieve its high throughput performance. Most existing works focus on the performance analysis of particular RZBF schemes such as the equip-power allocated RZBF under a fixed regularization parameter. This paper is the first work to consider the joint design of power allocation and regularization parameter for RZFB to maximize the worst users' throughput or the quality-of-service awarded energy efficiency under a fixed transmit power constraint. Such designs pose very computationally challenging optimization problems, for which the paper proposes two-stage optimization algorithms of low computational complexity. Their computational and performance efficiencies are substantiated through numerical examples.
引用
收藏
页码:2839 / 2853
页数:15
相关论文
共 42 条
[1]   What Will 5G Be? [J].
Andrews, Jeffrey G. ;
Buzzi, Stefano ;
Choi, Wan ;
Hanly, Stephen V. ;
Lozano, Angel ;
Soong, Anthony C. K. ;
Zhang, Jianzhong Charlie .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2014, 32 (06) :1065-1082
[2]   Nonsmooth Optimization for Efficient Beamforming in Cognitive Radio Multicast Transmission [J].
Anh Huy Phan ;
Hoang Duong Tuan ;
Ha Hoang Kha ;
Duy Trong Ngo .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (06) :2941-2951
[3]  
[Anonymous], 2017, CONVEX ANAL GLOBAL O
[4]  
Bjornson Emil., 2013, Telecommunications (ICT), 2013 20th International Conference on, P1
[5]  
Bonnans J. F., 2006, NUMER OPTIM THEOR PR
[6]   A Survey of Energy-Efficient Techniques for 5G Networks and Challenges Ahead [J].
Buzzi, Stefano ;
I, Chih-Lin ;
Klein, Thierry E. ;
Poor, H. Vincent ;
Yang, Chenyang ;
Zappone, Alessio .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2016, 34 (04) :697-709
[7]   Feedback Mechanisms for FDD Massive MIMO With D2D-Based Limited CSI Sharing [J].
Chen, Junting ;
Yin, Haifan ;
Cottatellucci, Laura ;
Gesbert, David .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2017, 16 (08) :5162-5175
[8]   Weighted Sum-Rate Maximization using Weighted MMSE for MIMO-BC Beamforming Design [J].
Christensen, Soren Skovgaard ;
Agarwal, Rajiv ;
de Carvalho, Elisabeth ;
Cioffi, John M. .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2008, 7 (12) :4792-4799
[9]   An Optimized Unitary Beamforming Technique for MIMO Broadcast Channels [J].
de Francisco, Ruben ;
Slock, Dirk T. M. .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2010, 9 (03) :990-1000
[10]   MIMO Energy Harvesting in Full-Duplex Multi-User Networks [J].
Ho Huu Minh Tam ;
Hoang Duong Tuan ;
Nasir, Ali Arshad ;
Duong, Trung Q. ;
Poor, H. Vincent .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2017, 16 (05) :3282-3297