Madelung transform and probability densities in hybrid quantum-classical dynamics

被引:24
作者
Gay-Balmaz, Francois [1 ,2 ]
Tronci, Cesare [3 ,4 ]
机构
[1] CNRS, Paris, France
[2] Ecole Normale Super, Lab Meteorol Dynam, Paris, France
[3] Univ Surrey, Dept Math, Guildford, Surrey, England
[4] Max Planck Inst Plasma Phys, Numer Methods Div, Garching, Germany
关键词
Madelung transform; momentum map; quantum hydrodynamics; geometric mechanics; SEMIDIRECT PRODUCTS; EQUATIONS; POISSON; SYSTEMS;
D O I
10.1088/1361-6544/aba233
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper extends the Madelung-Bohm formulation of quantum mechanics to describe the time-reversible interaction of classical and quantum systems. The symplectic geometry of the Madelung transform leads to identifying hybrid quantum-classical Lagrangian paths extending the Bohmian trajectories from standard quantum theory. As the classical symplectic form is no longer preserved, the nontrivial evolution of the Poincare integral is presented explicitly. Nevertheless, the classical phase-space components of the hybrid Bohmian trajectory identify a Hamiltonian flow parameterized by the quantum coordinate and this flow is associated to the motion of the classical subsystem. In addition, the continuity equation of the joint quantum-classical density is presented explicitly. While the von Neumann density operator of the quantum subsystem is always positive-definite by construction, the hybrid density is generally allowed to be unsigned. However, the paper concludes by presenting an infinite family of hybrid Hamiltonians whose corresponding evolution preserves the sign of the probability density for the classical subsystem.
引用
收藏
页码:5383 / 5424
页数:42
相关论文
共 67 条
  • [1] THE STATISTICAL DYNAMICS OF A SYSTEM CONSISTING OF A CLASSICAL AND A QUANTUM SUBSYSTEM
    ALEKSANDROV, IV
    [J]. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1981, 36 (08): : 902 - 908
  • [2] Hybrid classical-quantum formulations ask for hybrid notions
    Barcelo, Carlos
    Carballo-Rubio, Raul
    Garay, Luis J.
    Gomez-Escalante, Ricardo
    [J]. PHYSICAL REVIEW A, 2012, 86 (04):
  • [3] Bates S., 1997, Berkeley Mathematics Lecture Notes, V8
  • [4] BOHM D, 1952, PHYS REV, V85, P166, DOI 10.1103/PhysRev.85.166
  • [5] Koopman wavefunctions and classical-quantum correlation dynamics
    Bondar, Denys, I
    Gay-Balmaz, Francois
    Tronci, Cesare
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2019, 475 (2229):
  • [6] Operational Dynamic Modeling Transcending Quantum and Classical Mechanics
    Bondar, Denys I.
    Cabrera, Renan
    Lompay, Robert R.
    Ivanov, Misha Yu.
    Rabitz, Herschel A.
    [J]. PHYSICAL REVIEW LETTERS, 2012, 109 (19)
  • [7] Hamiltonian approach to Ehrenfest expectation values and Gaussian quantum states
    Bonet-Luz, Esther
    Tronci, Cesare
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2016, 472 (2189):
  • [8] SEMICLASSICAL PHYSICS AND QUANTUM FLUCTUATIONS
    BOUCHER, W
    TRASCHEN, J
    [J]. PHYSICAL REVIEW D, 1988, 37 (12): : 3522 - 3532
  • [9] Applied Koopmanism
    Budisic, Marko
    Mohr, Ryan
    Mezic, Igor
    [J]. CHAOS, 2012, 22 (04)
  • [10] VARIATIONAL PRINCIPLES FOR LIE-POISSON AND HAMILTON-POINCARE EQUATIONS
    Cendra, Hernan
    Marsden, Jerrold E.
    Pekarsky, Sergey
    Ratiu, Tudor S.
    [J]. MOSCOW MATHEMATICAL JOURNAL, 2003, 3 (03) : 833 - 867