Synthesis of quaternary reversible/quantum comparators

被引:24
作者
Khan, Mozammel H. A. [1 ]
机构
[1] East West Univ, Dept Comp Sci & Engn, Dhaka 1212, Bangladesh
关键词
Multiple-valued logic; Quaternary comparators; Quaternary logic; Quantum logic; Reversible logic;
D O I
10.1016/j.sysarc.2008.04.006
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Multiple-valued quantum circuits are promising choices for future quantum computing technology, since they have several advantages over binary quantum circuits. Quaternary logic has the advantage that classical binary functions can be very easily represented as quaternary functions by grouping two bits together into quaternary values. Grover's quantum search algorithm requires a sub-circuit called oracle, which takes a set of inputs and gives an output stating whether a given search condition is satisfied or not. Equality, less-than, and greater-than comparisons are widely used as search conditions. In this paper, we show synthesis of quaternary equality, less-than, and greater-than comparators on the top of ion-trap realizable 1-qudit gates and 2-qudit Muthukrishnan-Stroud gates. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:977 / 982
页数:6
相关论文
共 50 条
[41]   A Design for Testability Technique for Quantum Reversible Circuits [J].
Mondal, Joyati ;
Das, Debesh K. ;
Kole, Dipak K. ;
Rahaman, Hafizur .
PROCEEDINGS OF IEEE EAST-WEST DESIGN & TEST SYMPOSIUM (EWDTS 2013), 2013,
[42]   On figures of merit in reversible and quantum logic designs [J].
Majid Mohammadi ;
Mohammad Eshghi .
Quantum Information Processing, 2009, 8 :297-318
[43]   Towards designing quantum reversible ternary multipliers [J].
Asadi, Mohammad-Ali ;
Mosleh, Mohammad ;
Haghparast, Majid .
QUANTUM INFORMATION PROCESSING, 2021, 20 (07)
[44]   Towards designing quantum reversible ternary multipliers [J].
Mohammad-Ali Asadi ;
Mohammad Mosleh ;
Majid Haghparast .
Quantum Information Processing, 2021, 20
[45]   Reducing the Depth of Linear Reversible Quantum Circuits [J].
De Brugiere, Timothee Goubault ;
Baboulin, Marc ;
Valiron, Benoit ;
Martiel, Simon ;
Allouche, Cyril .
IEEE TRANSACTIONS ON QUANTUM ENGINEERING, 2021, 2
[46]   Designing of Reversible Functions in Classical and Quantum Domains [J].
Skorupski, Andrzej ;
Romaniuk, Ryszard .
INTERNATIONAL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2024, 70 (02) :501-508
[47]   On figures of merit in reversible and quantum logic designs [J].
Mohammadi, Majid ;
Eshghi, Mohammad .
QUANTUM INFORMATION PROCESSING, 2009, 8 (04) :297-318
[48]   Reversible Synthesis of Symmetric Functions with a Simple Regular Structure and Easy Testability [J].
Deb, Arighna ;
Das, Debesh K. ;
Rahaman, Hafizur ;
Wille, Robert ;
Drechsler, Rolf ;
Bhattacharya, Bhargab B. .
ACM JOURNAL ON EMERGING TECHNOLOGIES IN COMPUTING SYSTEMS, 2016, 12 (04)
[49]   Optimal Designs of Reversible/Quantum Decoder Circuit Using New Quantum Gates [J].
Slimani, Ayyoub ;
Benslama, Achour ;
Misra, Neeraj Kumar .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2022, 61 (03)
[50]   Optimal Designs of Reversible/Quantum Decoder Circuit Using New Quantum Gates [J].
Ayyoub Slimani ;
Achour Benslama ;
Neeraj Kumar Misra .
International Journal of Theoretical Physics, 2022, 61