Flavonoid Apigenin Is an Inhibitor of the NAD+ase CD38 Implications for Cellular NAD+ Metabolism, Protein Acetylation, and Treatment of Metabolic Syndrome

被引:239
作者
Escande, Carlos [1 ,2 ]
Nin, Veronica [1 ,2 ]
Price, Nathan L. [3 ]
Capellini, Verena [1 ,2 ]
Gomes, Ana P. [3 ]
Barbosa, Maria Thereza [1 ,2 ]
O'Neil, Luke [1 ,2 ]
White, Thomas A. [1 ,2 ]
Sinclair, David A. [3 ]
Chini, Eduardo N. [1 ,2 ]
机构
[1] Mayo Clin, Dept Anesthesiol, Rochester, MN 55905 USA
[2] Mayo Clin, Kogod Aging Ctr, Rochester, MN USA
[3] Harvard Univ, Sch Med, Dept Genet, Glenn Labs Biol Mech Aging, Boston, MA USA
基金
美国国家卫生研究院;
关键词
SMALL-MOLECULE ACTIVATORS; SIRT1; ACTIVATION; ENZYME CD38; MICE; RESVERATROL; OBESITY; DIET; DEACETYLASE; TRANSCRIPTION; SURVIVAL;
D O I
10.2337/db12-1139
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Metabolic syndrome is a growing health problem worldwide. It is therefore imperative to develop new strategies to treat this pathology. In the past years, the manipulation of NAD(+) metabolism has emerged as a plausible strategy to ameliorate metabolic syndrome. In particular, an increase in cellular NAD(+) levels has beneficial effects, likely because of the activation of sirtuins. Previously, we reported that CD38 is the primary NAD(+)ase in mammals. Moreover, CD38 knockout mice have higher NAD(+) levels and are protected against obesity and metabolic syndrome. Here, we show that CD38 regulates global protein acetylation through changes in NAD(+) levels and sirtuin activity. In addition, we characterize two CD38 inhibitors: quercetin and apigenin. We show that pharmacological inhibition of CD38 results in higher intracellular NAD(+) levels and that treatment of cell cultures with apigenin decreases global acetylation as well as the acetylation of p53 and RelA-p65. Finally, apigenin administration to obese mice increases NAD(+) levels, decreases global protein acetylation, and improves several aspects of glucose and lipid homeostasis. Our results show that CD38 is a novel pharmacological target to treat metabolic diseases via NAD(+)-dependent pathways. Diabetes 62:1084-1093, 2013
引用
收藏
页码:1084 / 1093
页数:10
相关论文
共 44 条
[21]   Apigenin inhibits release of inflammatory mediators by blocking the NF-κB activation pathways in the HMC-1 cells [J].
Kang, Ok-Hwa ;
Lee, John-Hwa ;
Kwon, Dong-Yeul .
IMMUNOPHARMACOLOGY AND IMMUNOTOXICOLOGY, 2011, 33 (03) :473-479
[22]   Flavonoids as inhibitors of human CD38 [J].
Kellenberger, Esther ;
Kuhn, Isabelle ;
Schuber, Francis ;
Muller-Steffner, Helene .
BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2011, 21 (13) :3939-3942
[23]   Poly(ADP-ribose) Polymerase-1 Is a Nuclear Epigenetic Regulator of Mitochondrial DNA Repair and Transcription [J].
Lapucci, Andrea ;
Pittelli, Maria ;
Rapizzi, Elena ;
Felici, Roberta ;
Moroni, Flavio ;
Chiarugi, Alberto .
MOLECULAR PHARMACOLOGY, 2011, 79 (06) :932-940
[24]   Cluster-supercluster alignments [J].
Lee, Jounghun ;
Evrard, August E. .
ASTROPHYSICAL JOURNAL, 2007, 657 (01) :30-36
[25]   Hepatic overexpression of SIRT1 in mice attenuates endoplasmic reticulum stress and insulin resistance in the liver [J].
Li, Yu ;
Xu, Shanqin ;
Giles, Amber ;
Nakamura, Kazuto ;
Lee, Jong Woo ;
Hou, Xiuyun ;
Donmez, Gizem ;
Li, Ji ;
Luo, Zhijun ;
Walsh, Kenneth ;
Guarente, Leonard ;
Zang, Mengwei .
FASEB JOURNAL, 2011, 25 (05) :1664-1679
[26]   Synthesis of NAADP and cADPR in mitochondria [J].
Liang, M ;
Chini, EN ;
Cheng, JF ;
Dousa, TP .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1999, 371 (02) :317-325
[27]   Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes [J].
Milne, Jill C. ;
Lambert, Philip D. ;
Schenk, Simon ;
Carney, David P. ;
Smith, Jesse J. ;
Gagne, David J. ;
Jin, Lei ;
Boss, Olivier ;
Perni, Robert B. ;
Vu, Chi B. ;
Bemis, Jean E. ;
Xie, Roger ;
Disch, Jeremy S. ;
Ng, Pui Yee ;
Nunes, Joseph J. ;
Lynch, Amy V. ;
Yang, Hongying ;
Galonek, Heidi ;
Israelian, Kristine ;
Choy, Wendy ;
Iffland, Andre ;
Lavu, Siva ;
Medvedik, Oliver ;
Sinclair, David A. ;
Olefsky, Jerrold M. ;
Jirousek, Michael R. ;
Elliott, Peter J. ;
Westphal, Christoph H. .
NATURE, 2007, 450 (7170) :712-716
[28]   SRT1720, SRT2183, SRT1460, and Resveratrol Are Not Direct Activators of SIRT1 [J].
Pacholec, Michelle ;
Bleasdale, John E. ;
Chrunyk, Boris ;
Cunningham, David ;
Flynn, Declan ;
Garofalo, Robert S. ;
Griffith, David ;
Griffor, Matt ;
Loulakis, Pat ;
Pabst, Brandon ;
Qiu, Xiayang ;
Stockman, Brian ;
Thanabal, Venkataraman ;
Varghese, Alison ;
Ward, Jessica ;
Withka, Jane ;
Ahn, Kay .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (11) :8340-8351
[29]   Sirt1 protects against high-fat diet-induced metabolic damage [J].
Pfluger, Paul T. ;
Herranz, Daniel ;
Velasco-Miguel, Susana ;
Serrano, Manuel ;
Tschop, Matthias H. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (28) :9793-9798
[30]   Global nutrition transition and the pandemic of obesity in developing countries [J].
Popkin, Barry M. ;
Adair, Linda S. ;
Ng, Shu Wen .
NUTRITION REVIEWS, 2012, 70 (01) :3-21