Flavonoid Apigenin Is an Inhibitor of the NAD+ase CD38 Implications for Cellular NAD+ Metabolism, Protein Acetylation, and Treatment of Metabolic Syndrome

被引:239
作者
Escande, Carlos [1 ,2 ]
Nin, Veronica [1 ,2 ]
Price, Nathan L. [3 ]
Capellini, Verena [1 ,2 ]
Gomes, Ana P. [3 ]
Barbosa, Maria Thereza [1 ,2 ]
O'Neil, Luke [1 ,2 ]
White, Thomas A. [1 ,2 ]
Sinclair, David A. [3 ]
Chini, Eduardo N. [1 ,2 ]
机构
[1] Mayo Clin, Dept Anesthesiol, Rochester, MN 55905 USA
[2] Mayo Clin, Kogod Aging Ctr, Rochester, MN USA
[3] Harvard Univ, Sch Med, Dept Genet, Glenn Labs Biol Mech Aging, Boston, MA USA
基金
美国国家卫生研究院;
关键词
SMALL-MOLECULE ACTIVATORS; SIRT1; ACTIVATION; ENZYME CD38; MICE; RESVERATROL; OBESITY; DIET; DEACETYLASE; TRANSCRIPTION; SURVIVAL;
D O I
10.2337/db12-1139
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Metabolic syndrome is a growing health problem worldwide. It is therefore imperative to develop new strategies to treat this pathology. In the past years, the manipulation of NAD(+) metabolism has emerged as a plausible strategy to ameliorate metabolic syndrome. In particular, an increase in cellular NAD(+) levels has beneficial effects, likely because of the activation of sirtuins. Previously, we reported that CD38 is the primary NAD(+)ase in mammals. Moreover, CD38 knockout mice have higher NAD(+) levels and are protected against obesity and metabolic syndrome. Here, we show that CD38 regulates global protein acetylation through changes in NAD(+) levels and sirtuin activity. In addition, we characterize two CD38 inhibitors: quercetin and apigenin. We show that pharmacological inhibition of CD38 results in higher intracellular NAD(+) levels and that treatment of cell cultures with apigenin decreases global acetylation as well as the acetylation of p53 and RelA-p65. Finally, apigenin administration to obese mice increases NAD(+) levels, decreases global protein acetylation, and improves several aspects of glucose and lipid homeostasis. Our results show that CD38 is a novel pharmacological target to treat metabolic diseases via NAD(+)-dependent pathways. Diabetes 62:1084-1093, 2013
引用
收藏
页码:1084 / 1093
页数:10
相关论文
共 44 条
[1]   Regulation of SIRT 1 mediated NAD dependent deacetylation: A novel role for the multifunctional enzyme CD38 [J].
Aksoy, Pinar ;
Escande, Carlos ;
White, Thomas A. ;
Thompson, Michael ;
Soares, Sandra ;
Benech, Juan Claudio ;
Chini, Eduardo N. .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2006, 349 (01) :353-359
[2]   Regulation of intracellular levels of NAD: A novel role for CD38 [J].
Aksoy, Pinar ;
White, Thomas A. ;
Thompson, Michael ;
Chini, Eduardo N. .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2006, 345 (04) :1386-1392
[3]   Poly(ADP-Ribose) Polymerase Inhibition: "Targeted" Therapy for Triple-Negative Breast Cancer [J].
Anders, Carey K. ;
Winer, Eric P. ;
Ford, James M. ;
Dent, Rebecca ;
Silver, Daniel P. ;
Sledge, George W. ;
Carey, Lisa A. .
CLINICAL CANCER RESEARCH, 2010, 16 (19) :4702-4710
[4]   PARP-1 Inhibition Increases Mitochondrial Metabolism through SIRT1 Activation [J].
Bai, Peter ;
Canto, Caries ;
Oudart, Hugues ;
Brunyanszki, Attila ;
Cen, Yana ;
Thomas, Charles ;
Yamamoto, Hiroyasu ;
Huber, Aline ;
Kiss, Borbala ;
Houtkooper, Riekelt H. ;
Schoonjans, Kristina ;
Schreiber, Valerie ;
Sauve, Anthony A. ;
Menissier-de Murcia, Josiane ;
Auwerx, Johan .
CELL METABOLISM, 2011, 13 (04) :461-468
[5]   The enzyme CD38 (a NAD glycohydrolase, EC 3.2.2.5) is necessary for the development of diet-induced obesity [J].
Barbosa, Maria Thereza P. ;
Soares, Sandra M. ;
Novak, Colleen M. ;
Sinclair, David ;
Levine, James A. ;
Aksoy, Pinar ;
Chini, Eduardo Nunes .
FASEB JOURNAL, 2007, 21 (13) :3629-3639
[6]   Resveratrol improves health and survival of mice on a high-calorie diet [J].
Baur, Joseph A. ;
Pearson, Kevin J. ;
Price, Nathan L. ;
Jamieson, Hamish A. ;
Lerin, Carles ;
Kalra, Avash ;
Prabhu, Vinayakumar V. ;
Allard, Joanne S. ;
Lopez-Lluch, Guillermo ;
Lewis, Kaitlyn ;
Pistell, Paul J. ;
Poosala, Suresh ;
Becker, Kevin G. ;
Boss, Olivier ;
Gwinn, Dana ;
Wang, Mingyi ;
Ramaswamy, Sharan ;
Fishbein, Kenneth W. ;
Spencer, Richard G. ;
Lakatta, Edward G. ;
Le Couteur, David ;
Shaw, Reuben J. ;
Navas, Placido ;
Puigserver, Pere ;
Ingram, Donald K. ;
de Cabo, Rafael ;
Sinclair, David A. .
NATURE, 2006, 444 (7117) :337-342
[7]  
Birt DF, 1997, ANTICANCER RES, V17, P85
[8]   Mechanism of human SIRT1 activation by resveratrol [J].
Borra, MT ;
Smith, BC ;
Denu, JM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (17) :17187-17195
[9]   Apigenin Induces Apoptosis in Human Leukemia Cells and Exhibits Anti-Leukemic Activity In Vivo [J].
Budhraja, Amit ;
Gao, Ning ;
Zhang, Zhuo ;
Son, Young-Ok ;
Cheng, Senping ;
Wang, Xin ;
Ding, Songze ;
Hitron, Andrew ;
Chen, Gang ;
Luo, Jia ;
Shi, Xianglin .
MOLECULAR CANCER THERAPEUTICS, 2012, 11 (01) :132-142
[10]  
Caltagirone S, 2000, INT J CANCER, V87, P595, DOI 10.1002/1097-0215(20000815)87:4<595::AID-IJC21>3.0.CO