Extracellular fluid viscosity enhances cell migration and cancer dissemination

被引:174
作者
Bera, Kaustav [1 ,2 ]
Kiepas, Alexander [1 ,2 ]
Godet, Ines [1 ,3 ]
Li, Yizeng [4 ]
Mehta, Pranav [1 ,2 ]
Ifemembi, Brent [1 ,2 ]
Paul, Colin D. [5 ]
Sen, Anindya [1 ,2 ]
Serra, Selma A. [6 ]
Stoletov, Konstantin [7 ]
Tao, Jiaxiang [8 ]
Shatkin, Gabriel [9 ]
Lee, Se Jong [1 ,2 ]
Zhang, Yuqi [1 ,2 ]
Boen, Adrianna [1 ]
Mistriotis, Panagiotis [10 ]
Gilkes, Daniele M. [1 ,3 ,11 ]
Lewis, John D. [7 ]
Fan, Chen-Ming [8 ]
Feinberg, Andrew P. [3 ,9 ,12 ]
Valverde, Miguel A. [6 ]
Sun, Sean X. [1 ,2 ,9 ,13 ]
Konstantopoulos, Konstantinos [1 ,2 ,3 ,9 ]
机构
[1] Johns Hopkins Univ, Dept Chem & Biomol Engn, Baltimore, MD 21205 USA
[2] Johns Hopkins Univ, Inst NanoBioTechnol, Baltimore, MD 21205 USA
[3] Johns Hopkins Univ, Sch Med, Dept Oncol, Sidney Kimmel Comprehens Canc Ctr, Baltimore, MD 21205 USA
[4] SUNY Binghamton, Dept Biomed Engn, Binghamton, NY USA
[5] NCI, Lab Cell Biol, Ctr Canc Res, NIH, Bethesda, MD 20892 USA
[6] Univ Pompeu Fabra, Dept Med & Life Sci, Lab Mol Physiol, Barcelona, Spain
[7] Univ Alberta, Dept Oncol, Edmonton, AB, Canada
[8] Carnegie Inst Sci, Dept Embryol, 115 W Univ Pkwy, Baltimore, MD 21210 USA
[9] Johns Hopkins Univ, Dept Biomed Engn, Baltimore, MD 21205 USA
[10] Auburn Univ, Dept Chem Engn, Auburn, AL 36849 USA
[11] Johns Hopkins Univ, Sch Med, Cellular & Mol Med Program, Baltimore, MD USA
[12] Johns Hopkins Univ, Ctr Epigenet, Sch Med, Baltimore, MD USA
[13] Johns Hopkins Univ, Dept Mech Engn, Baltimore, MD 21218 USA
基金
美国国家卫生研究院; 加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
TRPV4; CHANNEL; ION CHANNELS; ACTIN; ADHESION; MYOSIN; CONFINEMENT; RHOA; CYTOSKELETON; MECHANICS; STIFFNESS;
D O I
10.1038/s41586-022-05394-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cells respond to physical stimuli, such as stiffness(1), fluid shear stress(2) and hydraulic pressure(3,4). Extracellular fluid viscosity is a key physical cue that varies under physiological and pathological conditions, such as cancer(5). However, its influence on cancer biology and the mechanism by which cells sense and respond to changes in viscosity are unknown. Here we demonstrate that elevated viscosity counterintuitively increases the motility of various cell types on two-dimensional surfaces and in confinement, and increases cell dissemination from three-dimensional tumour spheroids. Increased mechanical loading imposed by elevated viscosity induces an actin-related protein 2/3 (ARP2/3)-complex-dependent dense actin network, which enhances Na+/H+ exchanger 1 (NHE1) polarization through its actin-binding partner ezrin. NHE1 promotes cell swelling and increased membrane tension, which, in turn, activates transient receptor potential cation vanilloid 4 (TRPV4) and mediates calcium influx, leading to increased RHOA-dependent cell contractility. The coordinated action of actin remodelling/dynamics, NHE1-mediated swelling and RHOA-based contractility facilitates enhanced motility at elevated viscosities. Breast cancer cells pre-exposed to elevated viscosity acquire TRPV4-dependent mechanical memory through transcriptional control of the Hippo pathway, leading to increased migration in zebrafish, extravasation in chick embryos and lung colonization in mice. Cumulatively, extracellular viscosity is a physical cue that regulates both short- and long-term cellular processes with pathophysiological relevance to cancer biology.
引用
收藏
页码:365 / +
页数:38
相关论文
共 67 条
  • [1] TRPV4 channel is involved in the coupling of fluid viscosity changes to epithelial ciliary activity
    Andrade, YN
    Fernandes, J
    Vázquez, E
    Fernández-Fernández, JM
    Arniges, M
    Sánchez, TM
    Villalón, M
    Valverde, MA
    [J]. JOURNAL OF CELL BIOLOGY, 2005, 168 (06) : 869 - 874
  • [2] Morphology of the lamellipodium and organization of actin filaments at the leading edge of crawling cells
    Atilgan, E
    Wirtz, D
    Sun, SX
    [J]. BIOPHYSICAL JOURNAL, 2005, 89 (05) : 3589 - 3602
  • [3] Physical confinement alters tumor cell adhesion and migration phenotypes
    Balzer, Eric M.
    Tong, Ziqiu
    Paul, Colin D.
    Hung, Wei-Chien
    Stroka, Kimberly M.
    Boggs, Amanda E.
    Martin, Stuart S.
    Konstantopoulos, Konstantinos
    [J]. FASEB JOURNAL, 2012, 26 (10) : 4045 - 4056
  • [4] Cell mechanics control rapid transitions between blebs and lamellipodia during migration
    Bergert, Martin
    Chandradoss, Stanley D.
    Desai, Ravi A.
    Paluch, Ewa
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (36) : 14434 - 14439
  • [5] Force Feedback Controls Motor Activity and Mechanical Properties of Self-Assembling Branched Actin Networks
    Bieling, Peter
    Li, Tai-De
    Weichsel, Julian
    McGorty, Ryan
    Jreij, Pamela
    Huang, Bo
    Fletcher, Daniel A.
    Mullins, R. Dyche
    [J]. CELL, 2016, 164 (1-2) : 115 - 127
  • [6] Dadakhujaev Shorafidinkhuja, 2014, Oncoscience, V1, P229
  • [7] Direct binding of the Na-H exchanger NHE1 to ERM proteins regulates the cortical cytoskeleton and cell shape independently of H+ translocation
    Denker, SP
    Huang, DC
    Orlowski, J
    Furthmayr, H
    Barber, DL
    [J]. MOLECULAR CELL, 2000, 6 (06) : 1425 - 1436
  • [8] Tissue cells feel and respond to the stiffness of their substrate
    Discher, DE
    Janmey, P
    Wang, YL
    [J]. SCIENCE, 2005, 310 (5751) : 1139 - 1143
  • [9] The TRPV4 channel links calcium influx to DDX3X activity and viral infectivity
    Donate-Macian, P.
    Jungfleisch, J.
    Perez-Vilaro, G.
    Rubio-Moscardo, F.
    Peralvarez-Marin, A.
    Diez, J.
    Valverde, M. A.
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [10] Micro-environmental control of cell migration - myosin IIA is required for efficient migration in fibrillar environments through control of cell adhesion dynamics
    Doyle, Andrew D.
    Kutys, Matthew L.
    Conti, Mary Anne
    Matsumoto, Kazue
    Adelstein, Robert S.
    Yamada, Kenneth M.
    [J]. JOURNAL OF CELL SCIENCE, 2012, 125 (09) : 2244 - 2256