Group colorability of multigraphs

被引:2
作者
Li, Hao [1 ]
Lai, Hong-Jian [2 ]
机构
[1] Renmin Univ China, Dept Math, Beijing 100872, Peoples R China
[2] W Virginia Univ, Dept Math, Morgantown, WV 26505 USA
关键词
Group coloring; Multigraph; Upper bound; GROUP CHROMATIC NUMBER; GRAPHS;
D O I
10.1016/j.disc.2012.09.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a multigraph with a fixed orientation D and let Gamma be a group. Let F(G, Gamma) denote the set of all functions f : E(G) -> Gamma. A multigraph G is Gamma-colorable if and only if for every f is an element of F(G, Gamma), there exists a Gamma-coloring c : V(G) -> Gamma such that for every e = uv is an element of E(G) (assumed to be directed from u to v), c(u)c(v)(-1) not equal f(e). We define the group chromatic number chi(g)(G) to be the minimum integer m such that G is Gamma-colorable for any group Gamma of order >= m under the orientation D. In this paper, we investigate the properties of chi(g) for multigraphs and prove an analogue to Brooks' Theorem. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:101 / 104
页数:4
相关论文
共 6 条
  • [1] Bondy J.A., 2008, GTM
  • [2] GROUP CONNECTIVITY OF GRAPHS - A NONHOMOGENEOUS ANALOG OF NOWHERE-ZERO FLOW PROPERTIES
    JAEGER, F
    LINIAL, N
    PAYAN, C
    TARSI, M
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1992, 56 (02) : 165 - 182
  • [3] A note on group colorings
    Král, D
    Pangrác, O
    Voss, HJ
    [J]. JOURNAL OF GRAPH THEORY, 2005, 50 (02) : 123 - 129
  • [4] On group chromatic number of graphs
    Lai, HJ
    Li, XW
    [J]. GRAPHS AND COMBINATORICS, 2005, 21 (04) : 469 - 474
  • [5] Lai HJ, 2002, ARS COMBINATORIA, V62, P299
  • [6] Group chromatic number of graphs without K5-minors
    Lai, HJ
    Zhang, XK
    [J]. GRAPHS AND COMBINATORICS, 2002, 18 (01) : 147 - 154