Computing generalized Nash equilibria by polynomial programming

被引:7
作者
Couzoudis, Eleftherios [1 ]
Renner, Philipp [1 ]
机构
[1] Univ Zurich, Dept Business Adm, CH-8044 Zurich, Switzerland
关键词
Generalized nash equilibrium; Parametrized optimization; Real algebraic geometry; Nonconvex optimization; Electricity spot market; Transmission loss;
D O I
10.1007/s00186-012-0422-5
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We present a new way to solve generalized Nash equilibrium problems. We assume the feasible set to be compact. Furthermore all functions are assumed to be polynomials. However we do not impose convexity on either the utility functions or the action sets. The key idea is to use Putinar's Positivstellensatz, a representation result for positive polynomials, to replace each agent's problem by a convex optimization problem. The Nash equilibria are then feasible solutions to a system of polynomial equations and inequalities. Our application is a model of the New Zealand electricity spot market with transmission losses based on a real dataset.
引用
收藏
页码:459 / 472
页数:14
相关论文
共 17 条
[1]   Gap Functions for Quasivariational Inequalities and Generalized Nash Equilibrium Problems [J].
Aussel, D. ;
Correa, R. ;
Marechal, M. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 151 (03) :474-488
[2]   On Gap Functions for Multivalued Stampacchia Variational Inequalities [J].
Aussel, D. ;
Dutta, J. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 149 (03) :513-527
[3]  
Aussel D, 2011, CONVEX OPTIMIZATION
[4]  
Boyd S., 2004, CONVEX OPTIMIZATION, VFirst, DOI DOI 10.1017/CBO9780511804441
[5]  
Electricity Authority NZ, 2012, MARK OP SERV PROV
[6]  
Electricity Authority NZ, 2011, MARK OP SERV PROV
[7]  
Electricity Authority NZ, 2010, MARK OP SERV PROV
[8]  
Electricity Authority NZ, 2010, GEM GEN EXP MOD
[9]   Generalized Nash equilibrium problems [J].
Facchinei, Francisco ;
Kanzow, Christian .
4OR-A QUARTERLY JOURNAL OF OPERATIONS RESEARCH, 2007, 5 (03) :173-210
[10]  
Henrion D, 2007, OPTIM METHOD SOFTW, V24, P761