A Hybrid Particle Swarm Optimization for Wireless Sensor Network Coverage Problem

被引:3
作者
Sun, Hui [1 ]
Li, Jun [2 ]
Li, Wenli [1 ]
Wang, Hui [1 ]
机构
[1] Nanchang Inst Technol, Sch Informat Engn, Nanchang 330099, Peoples R China
[2] Nanchang Hangkong Univ, Sch Informat Engn, Nanchang 330063, Peoples R China
关键词
Particle Swarm Optimization; Shuffled Frog Leaping Algorithm; Wireless Sensor Network Coverage Problem; GENETIC ALGORITHM;
D O I
10.1166/sl.2012.2644
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In this paper, a hybrid particle swarm optimization (HPSO) is proposed to solve wireless sensor network coverage problem. The HPSO employs a multi-swarm mechanism, in which each subswarm uses a shuffled frog leaping strategy to enhance the global search ability. Compared with other improved PSO variants or shuffled frog leaping algorithm, our approach is simple and easy to implement. Moreover, it has a good global search ability and fast convergence speed. Simulation results show that our approach achieves better node distribution than standard PSO, shuffled frog leaping algorithm and chaotic PSO.
引用
收藏
页码:1744 / 1750
页数:7
相关论文
共 22 条
[1]  
Barron J. L., 1992, Proceedings. 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.92CH3168-2), P236, DOI 10.1109/CVPR.1992.223269
[2]   Predicted modified PSO with time-varying accelerator coefficients [J].
Cai, Xingjuan ;
Cui, Yan ;
Tan, Ying .
INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2009, 1 (1-2) :50-60
[3]   The particle swarm - Explosion, stability, and convergence in a multidimensional complex space [J].
Clerc, M ;
Kennedy, J .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (01) :58-73
[4]   A hybrid real-parameter genetic algorithm for function optimization [J].
Hwang, SF ;
He, RS .
ADVANCED ENGINEERING INFORMATICS, 2006, 20 (01) :7-21
[5]   Hybrid approach to production scheduling using genetic algorithm and simulation [J].
Jeong, SJ ;
Lim, SJ ;
Kim, KS .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2006, 28 (1-2) :129-136
[6]  
Kennedy J, 2002, IEEE C EVOL COMPUTAT, P1671, DOI 10.1109/CEC.2002.1004493
[7]  
Kennedy J, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS PROCEEDINGS, VOLS 1-6, P1942, DOI 10.1109/icnn.1995.488968
[8]  
Kim DH, 2005, LECT NOTES ARTIF INT, V3682, P222
[9]   Comprehensive learning particle swarm optimizer for global optimization of multimodal functions [J].
Liang, J. J. ;
Qin, A. K. ;
Suganthan, Ponnuthurai Nagaratnam ;
Baskar, S. .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2006, 10 (03) :281-295
[10]  
Liang JJ, 2005, 2005 IEEE SWARM INTELLIGENCE SYMPOSIUM, P124