Progress on Sn-based thin-film anode materials for lithium-ion batteries

被引:61
|
作者
Hu RenZong [1 ]
Liu Hui [1 ]
Zeng MeiQin [1 ]
Liu JiangWen [1 ]
Zhu Min [1 ]
机构
[1] S China Univ Technol, Sch Mat Sci & Engn, Guangzhou 510640, Guangdong, Peoples R China
来源
CHINESE SCIENCE BULLETIN | 2012年 / 57卷 / 32期
基金
中国国家自然科学基金;
关键词
lithium-ion batteries; thin film; negative electrode; Sn-based alloys; Sn-based oxides; NI ALLOY FILM; ELECTROCHEMICAL PERFORMANCE; NEGATIVE ELECTRODE; HIGH-CAPACITY; SECONDARY BATTERIES; SINGLE-BATH; TIN; OXIDE; LI; CU;
D O I
10.1007/s11434-012-5303-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Thin-film lithium-ion batteries are the most competitive power sources for various kinds of micro-electro-mechanical systems and have been extensively researched. The present paper reviews the recent progress on Sn-based thin-film anode materials, with particular emphasis on the preparation and performances of pure Sn, Sn-based alloy, and Sn-based oxide thin films. From this survey, several conclusions can be drawn concerning the properties of Sn-based thin-film anodes. Pure Sn thin films deliver high reversible capacity but very poor cyclability due to the huge volume changes that accompany lithium insertion/extraction. The cycle performance of Sn-based intermetallic thin films can be enhanced at the expense of their capacities by alloying with inactive transition metals. In contrast to anodes in which Sn is alloyed with inactive transition metals, Sn-based nanocomposite films deliver high capacity with enhanced cycle performance through the incorporation of active elements. In comparison with pure Sn anodes, Sn-based oxide thin films show greatly enhanced cyclability due to the in situ formation of Sn nanodispersoids in an Li2O matrix, although there is quite a large initial irreversible capacity loss. For all of these anodes, substantial improvements have been achieved by micro-nanostructure tuning of the active materials. Based on the progress that has already been made on the relationship between the properties and microstructures of Sn-based thin-film anodes, it is believed that manipulating the multi-phase and multi-scale structures offers an important means of further improving the capacity and cyclability of Sn-based alloy thin-film anodes.
引用
收藏
页码:4119 / 4130
页数:12
相关论文
共 50 条
  • [21] Research progress of SiOx-based anode materials for lithium-ion batteries
    Li, Zhaojin
    Du, Mengjiao
    Guo, Xu
    Zhang, Di
    Wang, Qiujun
    Sun, Huilan
    Wang, Bo
    Wu, Yimin A.
    CHEMICAL ENGINEERING JOURNAL, 2023, 473
  • [22] Si-, Ge-, Sn-Based Anode Materials for Lithium-Ion Batteries: From Structure Design to Electrochemical Performance
    Li, Weihan
    Sun, Xueliang
    Yu, Yan
    SMALL METHODS, 2017, 1 (03):
  • [23] Investigations of Si Thin Films as Anode of Lithium-Ion Batteries
    Wu, Qingliu
    Shi, Bing
    Bareno, Javier
    Liu, Yuzi
    Maroni, Victor A.
    Zhai, Dengyun
    Dees, Dennis W.
    Lu, Wenquan
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (04) : 3487 - 3494
  • [24] Rational Design of Anode Materials Based on GroupIVA Elements (Si, Ge, and Sn) for Lithium-Ion Batteries
    Wu, Xing-Long
    Guo, Yu-Guo
    Wan, Li-Jun
    CHEMISTRY-AN ASIAN JOURNAL, 2013, 8 (09) : 1948 - 1958
  • [25] Nanocolumnar Structured Porous Cu-Sn Thin Film as Anode Material for Lithium-Ion Batteries
    Polat, Deniz B.
    Lu, Jun
    Abouimrane, Ali
    Keles, Ozgul
    Amine, Khalil
    ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (14) : 10877 - 10885
  • [26] SnS2 Based Anode Materials for Lithium-Ion Batteries
    Liu Xin
    Zhao Hailei
    Xie Jingying
    Wang Ke
    Lv Pengpeng
    Gao Chunhui
    PROGRESS IN CHEMISTRY, 2014, 26 (09) : 1586 - 1595
  • [27] The Status of Representative Anode Materials for Lithium-Ion Batteries
    Du, Chenyu
    Zhao, Zengying
    Liu, Hao
    Song, Fangyu
    Chen, Leilei
    Cheng, Yan
    Guo, Zhanhu
    CHEMICAL RECORD, 2023, 23 (05)
  • [28] Monodispersed macroporous architecture of nickel-oxide film as an anode material for thin-film lithium-ion batteries
    Wu, Mao-Sung
    Lin, Ya-Ping
    ELECTROCHIMICA ACTA, 2011, 56 (05) : 2068 - 2073
  • [29] Graphene Composites as Anode Materials in Lithium-Ion Batteries
    Atabaki, M. Mazar
    Kovacevic, R.
    ELECTRONIC MATERIALS LETTERS, 2013, 9 (02) : 133 - 153
  • [30] Recent Progress on Nanostructured Transition Metal Oxides As Anode Materials for Lithium-Ion Batteries
    Zhu, Jiping
    Ding, Yuan
    Ma, Zeping
    Tang, Weihao
    Chen, Xiang
    Lu, Yingwei
    JOURNAL OF ELECTRONIC MATERIALS, 2022, 51 (07) : 3391 - 3417