NAD+ metabolism as a target for metabolic health: have we found the silver bullet?

被引:44
作者
Connell, Niels J. [1 ]
Houtkooper, Riekelt H. [2 ]
Schrauwen, Patrick [1 ]
机构
[1] Maastricht Univ, NUTRIM Sch Nutr & Translat Res Metab, Dept Nutr & Movement Sci, Univ Singel 50,POB 616, NL-6200 MD Maastricht, Netherlands
[2] Univ Amsterdam, Amsterdam UMC, Amsterdam Gastroenterol & Metab, Lab Genet Metab Dis, Amsterdam, Netherlands
关键词
Diabetes; Energy metabolism; Human; Metabolic disease; NAD(+); Review; FATTY LIVER-DISEASE; SKELETAL-MUSCLE; NICOTINIC-ACID; MITOCHONDRIAL-FUNCTION; THERAPEUTIC TARGET; INSULIN-RESISTANCE; SIRT1; IMPROVES; EXERCISE; PHARMACOKINETICS;
D O I
10.1007/s00125-019-4831-3
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
NAD(+) has gone in and out of fashion within the scientific community a number of times since its discovery in the early 1900s. Over the last decade, NAD(+) has emerged as a potential target for combatting metabolic disturbances and the mitochondrial dysfunction that is mediated through sirtuin (SIRT) enzymes. The beneficial metabolic effects of the NAD(+)/SIRT axis have triggered an increased interest in NAD(+) as an enhancer of energy metabolism. As a result, a myriad of publications have focused on NAD(+) metabolism, with the majority of the work having been performed using in vitro models, and in vivo work largely consisting of interventions in Caenorhabditis elegans and rodents. Human intervention trials, on the other hand, are scarce. The aim of this review is to provide an overview of the state-of-the-art on influencing NAD(+) metabolism in humans and to set the stage for what the future of this exciting field may hold.
引用
收藏
页码:888 / 899
页数:12
相关论文
共 82 条
  • [1] An open-label, non-randomized study of the pharmacokinetics of the nutritional supplement nicotinamide riboside (NR) and its effects on blood NAD plus levels in healthy volunteers
    Airhart, Sophia E.
    Shireman, Laura M.
    Risler, Linda J.
    Anderson, Gail D.
    Gowda, G. A. Nagana
    Raftery, Daniel
    Tian, Rong
    Shen, Danny D.
    O'Brien, Kevin D.
    [J]. PLOS ONE, 2017, 12 (12):
  • [2] PARP-1 Inhibition Increases Mitochondrial Metabolism through SIRT1 Activation
    Bai, Peter
    Canto, Caries
    Oudart, Hugues
    Brunyanszki, Attila
    Cen, Yana
    Thomas, Charles
    Yamamoto, Hiroyasu
    Huber, Aline
    Kiss, Borbala
    Houtkooper, Riekelt H.
    Schoonjans, Kristina
    Schreiber, Valerie
    Sauve, Anthony A.
    Menissier-de Murcia, Josiane
    Auwerx, Johan
    [J]. CELL METABOLISM, 2011, 13 (04) : 461 - 468
  • [3] SirT1 Gain of Function Increases Energy Efficiency and Prevents Diabetes in Mice
    Banks, Alexander S.
    Kon, Ning
    Knight, Colette
    Matsumoto, Michihiro
    Gutierrez-Juarez, Roger
    Rossetti, Luciano
    Gu, Wei
    Accili, Domenico
    [J]. CELL METABOLISM, 2008, 8 (04) : 333 - 341
  • [4] Nicotinic acid-induced flushing is mediated by activation of epidermal langerhans cells
    Benyo, Zoltan
    Gille, Andreas
    Bennett, Clare L.
    Clausen, Bjoern E.
    Offermanns, Stefan
    [J]. MOLECULAR PHARMACOLOGY, 2006, 70 (06) : 1844 - 1849
  • [5] Efficacy and safety of high-density lipoprotein cholesterol-increasing compounds - A meta-analysis of randomized controlled trials
    Birjmohun, RS
    Hutten, BA
    Kastelein, JJP
    Stroes, ESG
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2005, 45 (02) : 185 - 197
  • [6] Nicotinic acid nicotinamide and nicotinamide riboside:: A molecular evaluation of NAD+ precursor vitamins in human nutrition
    Bogan, Katrina L.
    Brenner, Charles
    [J]. ANNUAL REVIEW OF NUTRITION, 2008, 28 : 115 - 130
  • [7] AMP-activated protein kinase regulates nicotinamide phosphoribosyl transferase expression in skeletal muscle
    Brandauer, Josef
    Vienberg, Sara G.
    Andersen, Marianne A.
    Ringholm, Stine
    Risis, Steve
    Larsen, Per S.
    Kristensen, Jonas M.
    Frosig, Christian
    Leick, Lotte
    Fentz, Joachim
    Jorgensen, Sebastian
    Kiens, Bente
    Wojtaszewski, Jorgen F. P.
    Richter, Erik A.
    Zierath, Juleen R.
    Goodyear, Laurie J.
    Pilegaard, Henriette
    Treebak, Jonas T.
    [J]. JOURNAL OF PHYSIOLOGY-LONDON, 2013, 591 (20): : 5207 - 5220
  • [8] CD38 Dictates Age-Related NAD Decline and Mitochondrial Dysfunction through an SIRT3-Dependent Mechanism
    Camacho-Pereira, Juliana
    Tarrago, Mariana G.
    Chini, Claudia C. S.
    Nin, Veronica
    Escande, Carlos
    Warner, Gina M.
    Puranik, Amrutesh S.
    Schoon, Renee A.
    Reid, Joel M.
    Galina, Antonio
    Chini, Eduardo N.
    [J]. CELL METABOLISM, 2016, 23 (06) : 1127 - 1139
  • [9] The NAD+ Precursor Nicotinamide Riboside Enhances Oxidative Metabolism and Protects against High-Fat Diet-Induced Obesity
    Canto, Caries
    Houtkooper, Riekelt H.
    Pirinen, Eija
    Youn, Dou Y.
    Oosterveer, Maaike H.
    Cen, Yana
    Fernandez-Marcos, Pablo J.
    Yamamoto, Hiroyasu
    Andreux, Penelope A.
    Cettour-Rose, Philippe
    Gademann, Karl
    Rinsch, Chris
    Schoonjans, Kristina
    Sauve, Anthony A.
    Auwerx, Johan
    [J]. CELL METABOLISM, 2012, 15 (06) : 838 - 847
  • [10] NAD+ Metabolism and the Control of Energy Homeostasis: A Balancing Act between Mitochondria and the Nucleus
    Canto, Carles
    Menzies, Keir J.
    Auwerx, Johan
    [J]. CELL METABOLISM, 2015, 22 (01) : 31 - 53