Atomistic modeling of site exchange defects in lithium iron phosphate and iron phosphate

被引:31
作者
Kuss, Christian [1 ]
Liang, Guoxian [2 ]
Schougaard, Steen B. [1 ]
机构
[1] Univ Quebec Montreal, Dept Chem, Montreal, PQ H1X 2J6, Canada
[2] Phostech Lithium Inc, St Bruno De Montarville, PQ J3V 6B7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
CATHODE MATERIAL; PHASE-DIAGRAM; AB-INITIO; LIFEPO4; CONDUCTIVITY; TRANSPORT; LIXFEPO4; MN; FE;
D O I
10.1039/c2jm35538h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A new set of potentials is presented that allows for modeling of the entire lithium insertion range of the lithium iron phosphate system (LixFePO4, 0 <= x <= 1). By comparing calculated values to experimental crystallographic, spectroscopic and thermodynamic data, the potentials ability to reproduce experimental results consistently and reliably is demonstrated. Calculations of site exchange defect thermodynamics and diffusion barriers for lithium and iron inside the lithium diffusion path suggest that the site exchange defect related capacity loss may be justified exclusively by thermodynamic considerations. Moreover, a low activation barrier for iron transport in the lithium diffusion channel in FePO4 brings into question the significance of the antisite iron ion as an obstacle to lithium diffusion.
引用
收藏
页码:24889 / 24893
页数:5
相关论文
共 43 条
  • [11] Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model
    Delmas, C.
    Maccario, M.
    Croguennec, L.
    Le Cras, F.
    Weill, F.
    [J]. NATURE MATERIALS, 2008, 7 (08) : 665 - 671
  • [12] THEORY OF THE DIELECTRIC CONSTANTS OF ALKALI HALIDE CRYSTALS
    DICK, BG
    OVERHAUSER, AW
    [J]. PHYSICAL REVIEW, 1958, 112 (01): : 90 - 103
  • [13] Lithium battery materials LiMPO4 (M = Mn, Fe, Co, and Ni):: Insights into defect association, transport mechanisms, and doping behavior
    Fisher, Craig A. J.
    Prieto, Veluz M. Hart
    Islam, M. Saiful
    [J]. CHEMISTRY OF MATERIALS, 2008, 20 (18) : 5907 - 5915
  • [14] Comparison between different LiFePO4 synthesis routes and their influence on its physico-chemical properties
    Franger, S
    Le Cras, F
    Bourbon, C
    Rouault, H
    [J]. JOURNAL OF POWER SOURCES, 2003, 119 : 252 - 257
  • [15] The General Utility Lattice Program (GULP)
    Gale, JD
    Rohl, AL
    [J]. MOLECULAR SIMULATION, 2003, 29 (05) : 291 - 341
  • [16] Anti-Site Defects and Ion Migration in the LiFe0.5Mn0.5PO4 Mixed-Metal Cathode Material
    Gardiner, Grahame R.
    Islam, M. Saiful
    [J]. CHEMISTRY OF MATERIALS, 2010, 22 (03) : 1242 - 1248
  • [17] Derivation of interatomic potentials for gallophosphates from the GaPO4-quartz structure:: Transferability study to gallosilicates and zeotype gallophosphates
    Girard, S
    Gale, JD
    Mellot-Draznieks, C
    Férey, G
    [J]. CHEMISTRY OF MATERIALS, 2001, 13 (05) : 1732 - 1738
  • [18] Ab initio study of the effects of Ag/Mn doping on the electronic structure of LiFePO4
    Hou XianHua
    Hu SheJun
    Li WeiShan
    Zhao LingZhi
    Ru Qiang
    Yu HongWen
    Huang ZhaoWen
    [J]. CHINESE SCIENCE BULLETIN, 2008, 53 (11): : 1763 - 1767
  • [19] Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material
    Islam, MS
    Driscoll, DJ
    Fisher, CAJ
    Slater, PR
    [J]. CHEMISTRY OF MATERIALS, 2005, 17 (20) : 5085 - 5092
  • [20] Lithium ion conductivity in single crystal LiFePO4
    Li, Jiying
    Yao, Wenlong
    Martin, Steve
    Vaknin, David
    [J]. SOLID STATE IONICS, 2008, 179 (35-36) : 2016 - 2019