SU(3) Spin-Orbit Coupling in Systems of Ultracold Atoms

被引:68
作者
Barnett, Ryan [1 ,2 ,3 ]
Boyd, G. R. [2 ]
Galitski, Victor [1 ,2 ]
机构
[1] Univ Maryland, Dept Phys, Joint Quantum Inst, College Pk, MD 20742 USA
[2] Univ Maryland, Dept Phys, Condensed Matter Theory Ctr, College Pk, MD 20742 USA
[3] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
基金
美国国家科学基金会;
关键词
QUANTIZED HALL CONDUCTANCE; HGTE QUANTUM-WELLS; TOPOLOGICAL INSULATORS; MAGNETIC-FIELDS; NEUTRAL ATOMS;
D O I
10.1103/PhysRevLett.109.235308
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Motivated by the recent experimental success in realizing synthetic spin-orbit coupling in ultracold atomic systems, we consider N-component atoms coupled to a non-Abelian SU(N) gauge field. More specifically, we focus on the case, referred to here as "SU(3) spin-orbit-coupling,'' where the internal states of three-component atoms are coupled to their momenta via a matrix structure that involves the Gell-Mann matrices (in contrast to the Pauli matrices in conventional SU(2) spin-orbit-coupled systems). It is shown that the SU(3) spin-orbit-coupling gives rise to qualitatively different phenomena and in particular we find that even a homogeneous SU(3) field on a simple square lattice enables a topologically nontrivial state to exist, while such SU(2) systems always have trivial topology. In deriving this result, we first establish an equivalence between the Hofstadter model with a 1/N Abelian flux per plaquette and a homogeneous SU(N) non-Abelian model. The former is known to have a topological spectrum for for N > 2, which is thus inherited by the latter. It is explicitly verified by an exact calculation for N 3, where we develop and use a new algebraic method to calculate topological indices in the SU(3) case. Finally, we consider a strip geometry and establish the existence of three gapless edge states-the hallmark feature of such an SU(3) topological insulator.
引用
收藏
页数:5
相关论文
共 34 条
[21]   Quantum spin hall insulator state in HgTe quantum wells [J].
Koenig, Markus ;
Wiedmann, Steffen ;
Bruene, Christoph ;
Roth, Andreas ;
Buhmann, Hartmut ;
Molenkamp, Laurens W. ;
Qi, Xiao-Liang ;
Zhang, Shou-Cheng .
SCIENCE, 2007, 318 (5851) :766-770
[22]   Spin-orbit-coupled Bose-Einstein condensates [J].
Lin, Y. -J. ;
Jimenez-Garcia, K. ;
Spielman, I. B. .
NATURE, 2011, 471 (7336) :83-U99
[23]   Synthetic magnetic fields for ultracold neutral atoms [J].
Lin, Y. -J. ;
Compton, R. L. ;
Jimenez-Garcia, K. ;
Porto, J. V. ;
Spielman, I. B. .
NATURE, 2009, 462 (7273) :628-632
[24]   Bose-Einstein Condensate in a Uniform Light-Induced Vector Potential [J].
Lin, Y. -J. ;
Compton, R. L. ;
Perry, A. R. ;
Phillips, W. D. ;
Porto, J. V. ;
Spielman, I. B. .
PHYSICAL REVIEW LETTERS, 2009, 102 (13)
[25]   An optical-lattice-based quantum simulator for relativistic field theories and topological insulators [J].
Mazza, Leonardo ;
Bermudez, Alejandro ;
Goldman, Nathan ;
Rizzi, Matteo ;
Angel Martin-Delgado, Miguel ;
Lewenstein, Maciej .
NEW JOURNAL OF PHYSICS, 2012, 14
[26]   Topological invariants of time-reversal-invariant band structures [J].
Moore, J. E. ;
Balents, L. .
PHYSICAL REVIEW B, 2007, 75 (12)
[27]   Classification of topological insulators and superconductors in three spatial dimensions [J].
Schnyder, Andreas P. ;
Ryu, Shinsei ;
Furusaki, Akira ;
Ludwig, Andreas W. W. .
PHYSICAL REVIEW B, 2008, 78 (19)
[28]  
Stamper-Kurn D. M., ARXIV12051888
[29]   Topological insulators and metals in atomic optical lattices [J].
Stanescu, Tudor D. ;
Galitski, Victor ;
Vaishnav, J. Y. ;
Clark, Charles W. ;
Das Sarma, S. .
PHYSICAL REVIEW A, 2009, 79 (05)
[30]   Tunable Gauge Potential for Neutral and Spinless Particles in Driven Optical Lattices [J].
Struck, J. ;
Oelschlaeger, C. ;
Weinberg, M. ;
Hauke, P. ;
Simonet, J. ;
Eckardt, A. ;
Lewenstein, M. ;
Sengstock, K. ;
Windpassinger, P. .
PHYSICAL REVIEW LETTERS, 2012, 108 (21)