Ensemble Effects in the Temperature-Dependent Photoluminescence of Silicon Nanocrystals

被引:10
作者
Jakob, Matthias [1 ]
Javadi, Morteza [2 ]
Veinot, Jonathan G. C. [2 ]
Meldrum, Al [3 ]
Kartouzian, Aras [1 ]
Heiz, Ulrich [1 ]
机构
[1] Tech Univ Munich, Chair Phys Chem, Lichtenbergstr 4, D-85748 Garching, Germany
[2] Univ Alberta, Dept Chem, Edmonton, AB T6G 2R3, Canada
[3] Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
ensemble effects; luminescence; nanocrystals; silicon; time-resolved spectroscopy; RESONANCE ENERGY-TRANSFER; SIZE DEPENDENCE; QUANTUM DOTS; LUMINESCENCE; NANOPARTICLES; PHOTOPHYSICS; LIFETIME; SPECTRUM; SOLIDS; ORIGIN;
D O I
10.1002/chem.201804986
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this work the temperature-dependent photoluminescence of alkyl-capped silicon nanocrystals with mean diameters of between 3 and 9nm has been investigated. The nanocrystals were characterized extensively by FTIR, TEM, powder XRD, and X-ray photoelectron spectroscopy prior to low-temperature and time-resolved photoluminescence spectroscopy experiments. The photoluminescence (PL) properties were evaluated in the temperature range of 41-300K. We found that the well-known temperature-dependent blueshift of the PL maximum decreases with increasing nanocrystal diameter and eventually becomes a redshift for nanocrystal diameters larger than 6nm. This implies that the observed shifts cannot be explained solely by band-gap widening, as is commonly assumed. We propose that the luminescence of drop-cast silicon nanocrystals is affected by particle ensemble effects, which can explain the otherwise surprising temperature dependence of the luminescence peak.
引用
收藏
页码:3061 / 3067
页数:7
相关论文
共 49 条
[1]  
[Anonymous], 2012, SEMICONDUCTOR DEVICE
[2]   Silicon Nanoparticles as Hyperpolarized Magnetic Resonance Imaging Agents [J].
Aptekar, Jacob W. ;
Cassidy, Maja C. ;
Johnson, Alexander C. ;
Barton, Robert A. ;
Lee, Menyoung ;
Ogier, Alexander C. ;
Vo, Chinh ;
Anahtar, Melis N. ;
Ren, Yin ;
Bhatia, Sangeeta N. ;
Ramanathan, Chandrasekhar ;
Cory, David G. ;
Hill, Alison L. ;
Mair, Ross W. ;
Rosen, Matthew S. ;
Walsworth, Ronald L. ;
Marcus, Charles M. .
ACS NANO, 2009, 3 (12) :4003-4008
[3]  
Bagher A. M., 2016, Sens. Transducers, V198, P37
[4]  
BELYAKOV VA, 2008, ADV OPT TECHNOL
[5]   Temperature-tuning of near-infrared monodisperse quantum dot solids at 1.5 μm for controllable Forster energy transfer [J].
Bose, Ranojoy ;
McMillan, James F. ;
Gao, Jie ;
Rickey, Kelly M. ;
Chen, Chariton J. ;
Talapin, Dmitri V. ;
Murray, Christopher B. ;
Wong, Chee Wei .
NANO LETTERS, 2008, 8 (07) :2006-2011
[6]   Enhancing Silicon Nanocrystal Photoluminescence through Temperature and Microstructure [J].
Brown, Samuel L. ;
Vogel, Dayton J. ;
Miller, Joseph B. ;
Inerbaev, Talgat M. ;
Anthony, Rebecca J. ;
Kortshagen, Uwe R. ;
Kilin, Dmitri S. ;
Hobbie, Erik K. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (33) :18909-18916
[7]   LUMINESCENCE OF SILICON MATERIALS - CHAINS, SHEETS, NANOCRYSTALS, NANOWIRES, MICROCRYSTALS, AND POROUS SILICON [J].
BRUS, L .
JOURNAL OF PHYSICAL CHEMISTRY, 1994, 98 (14) :3575-3581
[8]   Forster Resonance Energy Transfer between Quantum Dot Donors and Quantum Dot Acceptors [J].
Chou, Kenny F. ;
Dennis, Allison M. .
SENSORS, 2015, 15 (06) :13288-13325
[9]   From Hydrogen Silsesquioxane to Functionalized Silicon Nanocrystals [J].
Clark, Rhett J. ;
Aghajamali, Maryam ;
Gonzalez, Christina M. ;
Hadidi, Lida ;
Islam, Muhammad Amirul ;
Javadi, Morteza ;
Mobarok, Md Hosnay ;
Purkait, Tapas K. ;
Robidillo, Christopher Jay T. ;
Sinelnikov, Regina ;
Thiessen, Alyxandra N. ;
Washington, John ;
Yu, Haoyang ;
Veinot, Jonathan G. C. .
CHEMISTRY OF MATERIALS, 2017, 29 (01) :80-89
[10]  
Council NR., 2002, Small Wonders, Endless Frontiers: A Review of the National Nanotechnology Initiative