Fractional-order sinusoidal oscillators: Design procedure and practical examples

被引:246
作者
Radwan, Ahmed Gomaa [1 ]
Elwakil, Ahmed S. [2 ]
Soliman, Ahmed M. [3 ]
机构
[1] Cairo Univ, Fac Engn, Dept Engn Math, Cairo 12613, Egypt
[2] Univ Sharjah, Dept Elect & Comp Engn, Sharjah, U Arab Emirates
[3] Cairo Univ, Fac Engn, Dept Elect & Commun, Cairo 12613, Egypt
关键词
fractional-order circuits; noninteger order systems; oscillators;
D O I
10.1109/TCSI.2008.918196
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Sinusoidal oscillators are known to be realized using dynamical systems of second-order or higher. Here we derive the Barhkausen condition for a linear, noninteger-order (fractional-order) dynamical system to oscillate. We show that the oscillation condition and oscillation frequency of some famous integer-order sinusoidal oscillators can be obtained as special cases from general equations governing their fractional-order counterparts. Examples including fractional-order Wien oscillators, Colpitts oscillator, phase-shift oscillator and LC tank resonator are given supported by numerical and PSpice simulations.
引用
收藏
页码:2051 / 2063
页数:13
相关论文
共 25 条
[1]  
ABBISSO A, 2001, P INT S CIRC SYST IS, V3, P688
[2]   Fractional-order Wien-bridge oscillator [J].
Ahmad, W ;
El-khazali, R ;
Elwakil, AS .
ELECTRONICS LETTERS, 2001, 37 (18) :1110-1112
[3]  
ARENA A, 2002, WORLD SCI SER NONL A, V38
[4]   Modeling of a capacitive probe in a polarizable medium [J].
Biswas, K ;
Sen, S ;
Dutta, PK .
SENSORS AND ACTUATORS A-PHYSICAL, 2005, 120 (01) :115-122
[5]   Realization of a constant phase element and its performance study in a differentiator circuit [J].
Biswas, Karabi ;
Sen, Siddhartha ;
Dutta, Pranab Kumar .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2006, 53 (09) :802-806
[6]   Coprime factorizations and stability of fractional differential systems [J].
Bonnet, C ;
Partington, JR .
SYSTEMS & CONTROL LETTERS, 2000, 41 (03) :167-174
[7]  
Budak A., 1991, PASSIVE ACTIVE NETWO
[8]  
CARLSON GE, 1964, IEEE T CIRCUITS SYST, VCT11, P210
[9]   Analysis of fractional differential equations [J].
Diethelm, K ;
Ford, NJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 265 (02) :229-248
[10]  
ELKHAZALI R, 2003, INT J APPL MATH, V12, P73