Thermoelectric Fabrics: Toward Power Generating Clothing

被引:247
作者
Du, Yong [1 ]
Cai, Kefeng [2 ,3 ]
Chen, Song [2 ,3 ]
Wang, Hongxia [1 ]
Shen, Shirley Z. [4 ]
Donelson, Richard [4 ]
Lin, Tong [1 ]
机构
[1] Deakin Univ, Inst Frontier Mat, Geelong, Vic 3216, Australia
[2] Tongji Univ, Minist Educ, Key Lab Adv Civil Engn Mat, Shanghai 201804, Peoples R China
[3] Tongji Univ, Sch Mat Sci & Engn, Funct Mat Res Lab, Shanghai 201804, Peoples R China
[4] CSIRO Mfg Flagship, Clayton, Vic 3169, Australia
来源
SCIENTIFIC REPORTS | 2015年 / 5卷
关键词
BODY-SURFACE-AREA; PERFORMANCE; CONDUCTIVITY; OPTIMIZATION; TEMPERATURE; FIGURE;
D O I
10.1038/srep06411
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Herein, we demonstrate that a flexible, air-permeable, thermoelectric (TE) power generator can be prepared by applying a TE polymer (e.g. poly(3,4-ethylenedioxythiophene): poly(4-styrenesulfonate)) coated commercial fabric and subsequently by linking the coated strips with a conductive connection (e.g. using fine metal wires). The poly(3,4-ethylenedioxythiophene): poly(4-styrenesulfonate) coated fabric shows very stable TE properties from 300 K to 390 K. The fabric device can generate a TE voltage output (V) of 4.3 mV at a temperature difference (Delta T) of 75.2 K. The potential for using fabric TE devices to harvest body temperature energy has been discussed. Fabric-based TE devices may be useful for the development of new power generating clothing and self-powered wearable electronics.
引用
收藏
页数:6
相关论文
共 37 条
[1]  
Bubnova O, 2011, NAT MATER, V10, P429, DOI [10.1038/nmat3012, 10.1038/NMAT3012]
[2]   Effect of Interfacial Properties on Polymer-Nanocrystal Thermoelectric Transport [J].
Coates, Nelson E. ;
Yee, Shannon K. ;
McCulloch, Bryan ;
See, Kevin C. ;
Majumdar, Arun ;
Segalman, Rachel A. ;
Urban, Jeffrey J. .
ADVANCED MATERIALS, 2013, 25 (11) :1629-1633
[3]   The origin of the high conductivity of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT- PSS) plastic electrodes [J].
Crispin, X. ;
Jakobsson, F. L. E. ;
Crispin, A. ;
Grim, P. C. M. ;
Andersson, P. ;
Volodin, A. ;
van Haesendonck, C. ;
Van der Auweraer, M. ;
Salaneck, W. R. ;
Berggren, M. .
CHEMISTRY OF MATERIALS, 2006, 18 (18) :4354-4360
[4]   Thermoelectric cooling and power generation [J].
DiSalvo, FJ .
SCIENCE, 1999, 285 (5428) :703-706
[5]   Facile Preparation and Thermoelectric Properties of Bi2Te3 Based Alloy Nanosheet/PEDOT:PSS Composite Films [J].
Du, Yong ;
Cai, K. F. ;
Chen, Song ;
Cizek, Pavel ;
Lin, Tong .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (08) :5735-5743
[6]   The thermoelectric performance of carbon black/poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) composite films [J].
Du, Yong ;
Cai, Ke Feng ;
Shen, Shirley Z. ;
Yang, Wei Dong ;
Casey, Philip S. .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2013, 24 (05) :1702-1706
[7]   Research progress on polymer-inorganic thermoelectric nanocomposite materials [J].
Du, Yong ;
Shen, Shirley Z. ;
Cai, Kefeng ;
Casey, Philip S. .
PROGRESS IN POLYMER SCIENCE, 2012, 37 (06) :820-841
[8]   Wearable and flexible thermoelectric generator with enhanced package [J].
Francioso, L. ;
De Pascali, C. ;
Taurino, A. ;
Siciliano, P. ;
De Risi, A. .
SMART SENSORS, ACTUATORS, AND MEMS VI, 2013, 8763
[9]  
Franciscatto B. R., 2013, 43 EUR MICR C NUR GE
[10]   Optimization and fabrication of thick flexible polymer based micro thermoelectric generator [J].
Glatz, Wulf ;
Muntwyler, Simon ;
Hierold, Christofer .
SENSORS AND ACTUATORS A-PHYSICAL, 2006, 132 (01) :337-345