Thermoelectric Fabrics: Toward Power Generating Clothing

被引:238
作者
Du, Yong [1 ]
Cai, Kefeng [2 ,3 ]
Chen, Song [2 ,3 ]
Wang, Hongxia [1 ]
Shen, Shirley Z. [4 ]
Donelson, Richard [4 ]
Lin, Tong [1 ]
机构
[1] Deakin Univ, Inst Frontier Mat, Geelong, Vic 3216, Australia
[2] Tongji Univ, Minist Educ, Key Lab Adv Civil Engn Mat, Shanghai 201804, Peoples R China
[3] Tongji Univ, Sch Mat Sci & Engn, Funct Mat Res Lab, Shanghai 201804, Peoples R China
[4] CSIRO Mfg Flagship, Clayton, Vic 3169, Australia
来源
SCIENTIFIC REPORTS | 2015年 / 5卷
关键词
BODY-SURFACE-AREA; PERFORMANCE; CONDUCTIVITY; OPTIMIZATION; TEMPERATURE; FIGURE;
D O I
10.1038/srep06411
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Herein, we demonstrate that a flexible, air-permeable, thermoelectric (TE) power generator can be prepared by applying a TE polymer (e.g. poly(3,4-ethylenedioxythiophene): poly(4-styrenesulfonate)) coated commercial fabric and subsequently by linking the coated strips with a conductive connection (e.g. using fine metal wires). The poly(3,4-ethylenedioxythiophene): poly(4-styrenesulfonate) coated fabric shows very stable TE properties from 300 K to 390 K. The fabric device can generate a TE voltage output (V) of 4.3 mV at a temperature difference (Delta T) of 75.2 K. The potential for using fabric TE devices to harvest body temperature energy has been discussed. Fabric-based TE devices may be useful for the development of new power generating clothing and self-powered wearable electronics.
引用
收藏
页数:6
相关论文
共 37 条
  • [1] Bubnova O, 2011, NAT MATER, V10, P429, DOI [10.1038/nmat3012, 10.1038/NMAT3012]
  • [2] Effect of Interfacial Properties on Polymer-Nanocrystal Thermoelectric Transport
    Coates, Nelson E.
    Yee, Shannon K.
    McCulloch, Bryan
    See, Kevin C.
    Majumdar, Arun
    Segalman, Rachel A.
    Urban, Jeffrey J.
    [J]. ADVANCED MATERIALS, 2013, 25 (11) : 1629 - 1633
  • [3] The origin of the high conductivity of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT- PSS) plastic electrodes
    Crispin, X.
    Jakobsson, F. L. E.
    Crispin, A.
    Grim, P. C. M.
    Andersson, P.
    Volodin, A.
    van Haesendonck, C.
    Van der Auweraer, M.
    Salaneck, W. R.
    Berggren, M.
    [J]. CHEMISTRY OF MATERIALS, 2006, 18 (18) : 4354 - 4360
  • [4] Thermoelectric cooling and power generation
    DiSalvo, FJ
    [J]. SCIENCE, 1999, 285 (5428) : 703 - 706
  • [5] Facile Preparation and Thermoelectric Properties of Bi2Te3 Based Alloy Nanosheet/PEDOT:PSS Composite Films
    Du, Yong
    Cai, K. F.
    Chen, Song
    Cizek, Pavel
    Lin, Tong
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (08) : 5735 - 5743
  • [6] The thermoelectric performance of carbon black/poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) composite films
    Du, Yong
    Cai, Ke Feng
    Shen, Shirley Z.
    Yang, Wei Dong
    Casey, Philip S.
    [J]. JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2013, 24 (05) : 1702 - 1706
  • [7] Research progress on polymer-inorganic thermoelectric nanocomposite materials
    Du, Yong
    Shen, Shirley Z.
    Cai, Kefeng
    Casey, Philip S.
    [J]. PROGRESS IN POLYMER SCIENCE, 2012, 37 (06) : 820 - 841
  • [8] Wearable and flexible thermoelectric generator with enhanced package
    Francioso, L.
    De Pascali, C.
    Taurino, A.
    Siciliano, P.
    De Risi, A.
    [J]. SMART SENSORS, ACTUATORS, AND MEMS VI, 2013, 8763
  • [9] Franciscatto B. R., 2013, 43 EUR MICR C NUR GE
  • [10] Optimization and fabrication of thick flexible polymer based micro thermoelectric generator
    Glatz, Wulf
    Muntwyler, Simon
    Hierold, Christofer
    [J]. SENSORS AND ACTUATORS A-PHYSICAL, 2006, 132 (01) : 337 - 345