Light interception and radiation use efficiency in temperate quinoa (Chenopodium quinoa Willd.) cultivars

被引:43
|
作者
Ruiz, R. A. [1 ]
Bertero, H. D.
机构
[1] Univ Buenos Aires, Dpto Prod Vegetal, Fac Agron, Buenos Aires, DF, Argentina
关键词
quinoa; Chenopodium quinoa; extinction coefficient; RUE; LAI;
D O I
10.1016/j.eja.2008.05.003
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Sea level quinoas are grown at low altitudes in Central and Southern Chile. Both sensitivity to photoperiod and response to temperature largely determine quinoa adaptation, but crop biomass production must be quantified to evaluate agronomic performance. The objectives of this work are: (i) to characterize development effects on leaf area evolution for genotypes of sea level quinoa differing in cycle length, (ii) to quantify the extinction coefficient (k) for photosynthetically active radiation (PAR) and radiation use efficiency (RUE) from emergence up to the beginning of grain filling and (iii) to identify which crop attributes related to canopy architecture should be considered to improve biomass production. Four cultivars (NL-6, RU-5, CO-407 and Faro) were cropped in Pergamino (33 degrees 56'S, 60 degrees 35'W, 65 m a.s.l.), Argentina, at three densities (from 22 to 66 plants m(-2)) in two consecutive years under field conditions with adequate water and nutrient supply. Thermal time to first anthesis and maximum leaf number on the main stem were linearly correlated (r(2) = 0.87; p < 0.0001). Leaf area continued to increase during the flowering phase, notably in NL-6, the earliest genotype. There were significant differences in maximum plant leaf area between cultivars. Increasing density reduced plant leaf area but effects were comparatively small. Estimated k was 0.59 +/- 0.02 across genotypes and was higher (p < 0.05) for 66 plants m(-2). Values for RUE changed as cumulative intercepted PAR (IPAR) increased; at initial stages of development RUE was 1.25 +/- 0.09 g MJ IPAR(-1), but if cumulative IPAR was higher than 107.5 +/- 10.4 MJ IPAR m(-2), RUE was 2.68 +/- 10.15 g MJ IPAR(-1). That change occurred when leaf area index (LAI) and fraction of PAR intercepted were still low and ranged from 0.61 to 1.38 and from 0.33 to 0.51, respectively. No significant association was found with any developmental stage. Our results agreed to the notion that RUE variation during pre-anthesis phases is largely determined by LAI through its effect on radiation distribution within the canopy. Biomass production could be improved if periods of interception below 50% of incoming PAR were reduced to ensure high RUE. This seems to be possible in temperate areas both by the use of late genotypes with a higher number of leaves on the main stem and by early genotypes provided adequate plant density is chosen. Early increment in LAI and overlapping of the leaf area increase period with the flowering phase are desirable strategies for earliest genotypes to maximize yield. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:144 / 152
页数:9
相关论文
共 50 条
  • [21] Physiological and Morphological Responses of two Quinoa Cultivars (Chenopodium quinoa Willd.) to Drought Stress
    Ali, Oudou Issa
    Fghire, Rachid
    Anaya, Fatima
    Benlhabib, Ouafae
    Wahbi, Said
    GESUNDE PFLANZEN, 2019, 71 (02): : 123 - 133
  • [22] Effects of Salinity and Soil-Drying on Radiation Use Efficiency, Water Productivity and Yield of Quinoa (Chenopodium quinoa Willd.)
    Razzaghi, F.
    Ahmadi, S. H.
    Jacobsen, S. -E.
    Jensen, C. R.
    Andersen, M. N.
    JOURNAL OF AGRONOMY AND CROP SCIENCE, 2012, 198 (03) : 173 - 184
  • [23] Physiological and Morphological Responses of two Quinoa Cultivars (Chenopodium quinoa Willd.) to Drought Stress; [Physiologische und morphologische Reaktionen zweier Quinoa-Sorten (Chenopodium quinoa Willd.) auf Trockenstress]
    Issa Ali O.
    Fghire R.
    Anaya F.
    Benlhabib O.
    Wahbi S.
    Gesunde Pflanzen, 2019, 71 (2): : 123 - 133
  • [24] Development and use of microsatellite markers for germplasm characterization in quinoa (Chenopodium quinoa Willd.)
    Mason, SL
    Stevens, MR
    Jellen, EN
    Bonifacio, A
    Fairbanks, DJ
    Coleman, CE
    McCarty, RR
    Rasmussen, AG
    Maughan, PJ
    CROP SCIENCE, 2005, 45 (04) : 1618 - 1630
  • [25] Silicon mitigates nutritional stress in quinoa (Chenopodium quinoa Willd.)
    Ana Carolina Sales
    Cid Naudi Silva Campos
    Jonas Pereira de Souza Junior
    Dalila Lopes da Silva
    Kamilla Silva Oliveira
    Renato de Mello Prado
    Larissa Pereira Ribeiro Teodoro
    Paulo Eduardo Teodoro
    Scientific Reports, 11
  • [26] The resistance of quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors
    Jacobsen, SE
    Mujica, A
    Jensen, CR
    FOOD REVIEWS INTERNATIONAL, 2003, 19 (1-2) : 99 - 109
  • [27] Quinoa (Chenopodium quinoa Willd.), a potential new crop for Pakistan
    Jacobsen, SE
    Hollington, PA
    Hussain, Z
    PROSPECTS FOR SALINE AGRICULTURE, 2002, 37 : 247 - 249
  • [28] Stability Parameters and AMMI Analysis of Quinoa (Chenopodium quinoa Willd.)
    Ali, Mohamed
    Elsadek, Ashraf
    Salem, Emad Mohamed
    EGYPTIAN JOURNAL OF AGRONOMY, 2018, 40 (01): : 59 - 74
  • [29] Silicon mitigates nutritional stress in quinoa (Chenopodium quinoa Willd.)
    Sales, Ana Carolina
    Silva Campos, Cid Naudi
    de Souza Junior, Jonas Pereira
    da Silva, Dalila Lopes
    Oliveira, Kamilla Silva
    de Mello Prado, Renato
    Ribeiro Teodoro, Larissa Pereira
    Teodoro, Paulo Eduardo
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [30] Hydration kinetics of four quinoa (Chenopodium quinoa Willd.) varieties
    Pumacahua Ramos, Augusto
    Limaylla Guerrero, Katherine Milusca
    Romero, Javier Telis
    Lopes Filho, Jose Francisco
    REVISTA COLOMBIANA DE INVESTIGACIONES AGROINDUSTRIALES, 2016, 3 : 23 - 33