ALGORITHMIC AND ANALYTICAL APPROACHES TO THE SPLIT FEASIBILITY PROBLEMS AND FIXED POINT PROBLEMS

被引:5
作者
Zhu, Li-Jun [1 ]
Liou, Yeong-Cheng [2 ]
Yao, Yonghong [3 ]
Chyu, Chiuh-Cheng [4 ]
机构
[1] Beifang Univ Nationalities, Sch Informat & Calculat, Yinchuan 750021, Peoples R China
[2] Cheng Shiu Univ, Dept Informat Management, Kaohsiung 833, Taiwan
[3] Tianjin Polytech Univ, Dept Math, Tianjin 300387, Peoples R China
[4] Yuan Ze Univ, Dept Ind Engn & Management, Chungli 32003, Taiwan
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2013年 / 17卷 / 05期
关键词
Split feasibility problem; Fixed point; Nonexpansive mapping; Strong convergence; VISCOSITY APPROXIMATION METHODS; GENERAL ITERATIVE METHOD; NONEXPANSIVE-MAPPINGS; HILBERT-SPACES; BANACH-SPACES; EXTRAGRADIENT METHOD; FINITE FAMILY; OPERATORS; CONVERGENCE;
D O I
10.11650/tjm.17.2013.3175
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The split feasibility problem and fixed point problem is considered. New algorithm is presented for solving this split problem. Some analytical techniques are demonstrated and strong convergence results are obtained.
引用
收藏
页码:1839 / 1853
页数:15
相关论文
共 30 条
[1]  
[Anonymous], 1990, CAMBRIDGE STUDIES AD
[3]  
Byrne Charles., 2001, Studies in Computational Mathematics, V8, P87
[4]   An extragradient method for solving split feasibility and fixed point problems [J].
Ceng, L-C ;
Ansari, Q. H. ;
Yao, J-C .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (04) :633-642
[5]   Hybrid viscosity-like approximation methods for nonexpansive mappings in Hilbert spaces [J].
Ceng, Lu-Chuan ;
Guu, Sy-Ming ;
Yao, Jen-Chih .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (03) :605-617
[6]  
Censor Y., 1994, Numerical Algorithms, V8, P221, DOI DOI 10.1007/BF02142692
[7]  
Censor Y, 2009, J CONVEX ANAL, V16, P587
[8]   A unified approach for inversion problems in intensity-modulated radiation therapy [J].
Censor, Yair ;
Bortfeld, Thomas ;
Martin, Benjamin ;
Trofimov, Alexei .
PHYSICS IN MEDICINE AND BIOLOGY, 2006, 51 (10) :2353-2365
[9]   Viscosity approximation methods for a finite family of nonexpansive mappings in Banach spaces [J].
Chang, Shih-Sen .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 323 (02) :1402-1416
[10]   Convergence of a general iterative method for nonexpansive mappings in Hilbert spaces [J].
Cho, Yeol Je ;
Qin, Xiaolong .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 228 (01) :458-465