Diffusion phenomena for the wave equation with structural damping in the Lp - Lq framework

被引:65
作者
D'Abbicco, M. [1 ]
Ebert, M. R. [2 ]
机构
[1] Univ Bari, Dipartimento Matemat, I-70125 Bari, Italy
[2] Univ Sao Paulo, FFCLRP, Dept Computacao & Matemat, BR-14040901 Ribeirao Preto, SP, Brazil
关键词
MAXIMUM PRINCIPLE; CRITICAL EXPONENT; R-N; DECAY;
D O I
10.1016/j.jde.2014.01.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study diffusion phenomena for the wave equation with structural damping u(tt) - Delta u + 2a(-Delta)(sigma)u(t)=0, u(0,x)=u(0)(x), u(t)(0,x)=u(1)(x), with a > 0 and sigma epsilon (0, 1/2). We show that the solution a behaves like the solution v(+) to v(t)(+) + 1/2a(-Delta)(1-sigma)v(+)=0, v(+)(0,x)=v(0)(+)(x), for suitable choice of initial data v(0)(+). precisely, we derive L-p - L-q decay estimates for the difference u - v(+) and its time and space derivatives, where 1 <= p <= q <= infinity, possibly not on the conjugate line, satisfying some additional condition related to sigma. In particular, we show that, under suitable assumptions on p, q, sigma, a double diffusion phenomenon appears, that is, the difference u - v(+) behaves like the solution to v(t)(-)+2a(-Delta)(sigma)v(-) = 0, v(-)(0,x)=v(0)(-)(x), for a suitable choice of initial data v(0)(-). (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:2307 / 2336
页数:30
相关论文
共 36 条
[1]  
[Anonymous], 1971, PRINCETON MATH SER
[2]   Asymptotics for conservation laws involving Levy diffusion generators [J].
Biler, P ;
Karch, G ;
Woyczynski, WA .
STUDIA MATHEMATICA, 2001, 148 (02) :171-192
[3]   Sharp decay rates for wave equations with a fractional damping via new method in the Fourier space [J].
Charao, Ruy Coimbra ;
da Luz, Cleverson Roberto ;
Ikehata, Ryo .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 408 (01) :247-255
[4]  
Chen H., 1996, Pitman Res. Notes Math. Ser., Longman, V349, P6
[5]   A maximum principle applied to quasi-geostrophic equations [J].
Córdoba, A ;
Córdoba, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 249 (03) :511-528
[6]   The influence of a nonlinear memory on the damped wave equation [J].
D'Abbicco, M. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 95 :130-145
[7]   Semilinear structural damped waves [J].
D'Abbicco, M. ;
Reissig, M. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (11) :1570-1592
[8]  
D'Abbicco M., 2014, NONLINEAR A IN PRESS
[9]  
D'Abbicco M, 2013, ADV NONLINEAR STUD, V13, P867
[10]   Semi-linear wave equations with effective damping [J].
D'Abbicco, Marcello ;
Lucente, Sandra ;
Reissig, Michael .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2013, 34 (03) :345-380