Characterization of prompt gamma ray emission for in vivo range verification in particle therapy: A simulation study

被引:9
作者
Zarifi, Melek [1 ]
Guatelli, Susanna [1 ]
Qi, Yujin [1 ]
Bolst, David [1 ]
Prokopovich, Dale [2 ]
Rosenfeld, Anatoly [1 ]
机构
[1] Univ Wollongong, Ctr Med Radiat Phys, Wollongong, NSW, Australia
[2] Australian Nucl Sci & Technol Org, Lucas Heights, NSW, Australia
来源
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS | 2019年 / 62卷
关键词
Prompt gamma; Range verification; Bragg peak tracking; Hadron therapy; Time-of-flight; ION-BEAM THERAPY; PROTON THERAPY; COMPTON CAMERA; SLIT CAMERA; BRAGG PEAK; UNCERTAINTIES; PATIENT; C-12; HE-4;
D O I
10.1016/j.ejmp.2019.04.023
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
In this paper we investigate the emission and detection characteristics of prompt gamma (PG) rays for in vivo range verification during hadron therapy, using Geant4 simulations. Proton, He-4 and C-12 beams of varying energy are incident on water phantoms. The PG production yield, energy spectral characteristics and spatial correlation with the Bragg Peak (BP) have been quantified. Further, the angular distributions for PG detection with respect to a point-of-reference on the phantom surface have been explored. The temporal properties of PG emission and time-of-flight (TOF) of PG detection have also been investigated in correlation with the changing particle beam range. Our results show that the primary PG rays from nuclear interactions of the primary beam exhibit the closest correlation to the beam range but its signal is significantly masked by the concurrent secondary PG rays, particularly for heavier ions such as carbon ion beams. The PG TOF spectroscopy encodes the essential information of the beam range but requires high time resolution measurements to retrieve it. A hybrid PG detection system to utilize the energy, timing and spatial characteristics of PG rays is desirable for BP tracking in real-time.
引用
收藏
页码:20 / 32
页数:13
相关论文
共 50 条
[41]   Prompt gamma spectroscopy for absolute range verification of 12C ions at synchrotron-based facilities [J].
Dal Bello, Riccardo ;
Martins, Paulo Magalhaes ;
Brons, Stephan ;
Hermann, German ;
Kihm, Thomas ;
Seimetz, Michael ;
Seco, Joao .
PHYSICS IN MEDICINE AND BIOLOGY, 2020, 65 (09)
[42]   Simulation study on a prompt gamma detection system for use in proton therapy [J].
Kang, Byoung Hwi ;
Kim, Jong Won .
JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2008, 52 (03) :810-813
[43]   Light-transport incorporated plastic scintillator response to prompt gamma-rays for use in range verification of proton therapy [J].
Shahsavari, A. ;
Ghal-Eh, N. ;
Najafabadi, R. Izadi .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2023, 1049
[44]   Particle range retrieval in heterogeneous phantoms with the prompt gamma ray timing method at a clinical proton accelerator [J].
Hueso-Gonzalez, F. ;
Golnik, C. ;
Berthel, M. ;
Dreyer, A. ;
Enghardt, W. ;
Fiedler, F. ;
Heidel, K. ;
Janssens, G. ;
Kormoll, T. ;
Petzoldt, J. ;
Prieels, D. ;
Priegnitz, M. ;
Roemer, K. E. ;
Smeets, J. ;
Sobiella, M. ;
Vander Stappen, F. ;
Wagner, A. ;
Weinberger, D. ;
Pausch, G. .
2014 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2014,
[45]   Time-of-flight neutron rejection to improve prompt gamma imaging for proton range verification: a simulation study [J].
Biegun, Aleksandra K. ;
Seravalli, Enrica ;
Lopes, Patricia Cambraia ;
Rinaldi, Ilaria ;
Pinto, Marco ;
Oxley, David C. ;
Dendooven, Peter ;
Verhaegen, Frank ;
Parodi, Katia ;
Crespo, Paulo ;
Schaart, Dennis R. .
PHYSICS IN MEDICINE AND BIOLOGY, 2012, 57 (20) :6429-6444
[46]   Loading the tumor with 31P, 63Cu and 89Y provides an in vivo prompt gamma-based range verification for therapeutic protons [J].
Cartechini, Giorgio ;
Fogazzi, Elena ;
Hart, Shanyn-Dee ;
Pellegri, Luna ;
Vanstalle, Marie ;
Marafini, Michela ;
La Tessa, Chiara .
FRONTIERS IN PHYSICS, 2023, 11
[47]   Characterization of scintillator crystals for usage as prompt gamma monitors in particle therapy [J].
Roemer, K. ;
Pausch, G. ;
Bemmerer, D. ;
Berthel, M. ;
Dreyer, A. ;
Golnik, C. ;
Hueso-Gonzalez, F. ;
Kormoll, T. ;
Petzoldt, J. ;
Rohling, H. ;
Thirolf, P. ;
Wagner, A. ;
Wagner, L. ;
Weinberger, D. ;
Fiedler, F. .
JOURNAL OF INSTRUMENTATION, 2015, 10
[48]   A new treatment planning approach accounting for prompt gamma range verification and interfractional anatomical changes [J].
Tian, Liheng ;
Landry, Guillaume ;
Dedes, George ;
Pinto, Marco ;
Kamp, Florian ;
Belka, Claus ;
Parodi, Katia .
PHYSICS IN MEDICINE AND BIOLOGY, 2020, 65 (09)
[49]   Requirements for a Compton camera for in vivo range verification of proton therapy [J].
Rohling, H. ;
Priegnitz, M. ;
Schoene, S. ;
Schumann, A. ;
Enghardt, W. ;
Hueso-Gonzalez, F. ;
Pausch, G. ;
Fiedler, F. .
PHYSICS IN MEDICINE AND BIOLOGY, 2017, 62 (07) :2795-2811
[50]   Spatially resolved measurement of wideband prompt gamma-ray emission toward on-line monitor for the future proton therapy [J].
Koide, A. ;
Kataoka, J. ;
Taya, T. ;
Iwamoto, Y. ;
Sueoka, K. ;
Mochizuki, S. ;
Arimoto, M. ;
Inaniwa, T. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2018, 912 :24-28