Inverse source problem for linearized Navier-Stokes equations with data in arbitrary sub-domain

被引:24
作者
Choulli, Mourad [1 ]
Imanuvilov, Oleg Yu. [2 ]
Puel, Jean-Pierre [3 ,4 ]
Yamamoto, Masahiro [3 ]
机构
[1] Univ Lorraine, UMR 7122, LMAM, F-57045 Metz 1, France
[2] Colorado State Univ, Dept Math, Ft Collins, CO 80523 USA
[3] Univ Tokyo, Dept Math Sci, Meguro Ku, Tokyo 1538914, Japan
[4] Univ Versailles St Quentin, Lab Math Appl, F-78035 Versailles, France
关键词
inverse source problem; Navier-Stokes equations; Carleman estimate; Lipschitz stability; LOGARITHMIC STABILITY; EXACT CONTROLLABILITY; LIPSCHITZ STABILITY; MAXWELLS EQUATIONS; HYPERBOLIC PROBLEM; UNIQUENESS;
D O I
10.1080/00036811.2012.718334
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider an inverse problem of determining a spatially varying factor in a source term in the non-stationary linearized Navier-Stokes equations by observation data in an arbitrarily fixed sub-domain over some time interval. We prove the Lipschitz stability provided that the t-dependent factor satisfies a non-degeneracy condition. Our proof is based on a new Carleman estimate for the linearized Navier-Stokes equations.
引用
收藏
页码:2127 / 2143
页数:17
相关论文
共 50 条
[21]   A REMARK ON A LIOUVILLE PROBLEM WITH BOUNDARY FOR THE STOKES AND THE NAVIER-STOKES EQUATIONS [J].
Giga, Yoshikazu .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2013, 6 (05) :1277-1289
[22]   Convergence acceleration for the linearized Navier-Stokes equations using semicirculant approximations [J].
Holmgren, S ;
Brandén, H ;
Sterner, E .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 21 (04) :1524-1550
[23]   A parallel Oseen-linearized algorithm for the stationary Navier-Stokes equations [J].
Shang, Yueqiang ;
He, Yinnian .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 209 :172-183
[24]   Boundary conditions and estimates for the linearized Navier-Stokes equations on staggered grids [J].
Kress, W ;
Nilsson, J .
COMPUTERS & FLUIDS, 2003, 32 (08) :1093-1112
[25]   Data assimilation finite element method for the linearized Navier-Stokes equations in the low Reynolds regime [J].
Boulakia, Muriel ;
Burman, Erik ;
Fernandez, Miguel A. ;
Voisembert, Colette .
INVERSE PROBLEMS, 2020, 36 (08)
[26]   A frequency domain linearized Navier-Stokes equations approach to acoustic propagation in flow ducts with sharp edges [J].
Kierkegaard, Axel ;
Boij, Susann ;
Efraimsson, Gunilla .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2010, 127 (02) :710-719
[27]   Application of the Fictitious Domain Method for Navier-Stokes Equations [J].
Temirbekov, Almas ;
Zhaksylykova, Zhadra ;
Malgazhdarov, Yerzhan ;
Kasenov, Syrym .
CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (01) :2035-2055
[28]   Domain dependence of solutions to compressible Navier-Stokes equations [J].
Plotnikov, P. I. ;
Sokolowski, J. .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2006, 45 (04) :1165-1197
[29]   Navier-stokes equations with navier boundary conditions for a bounded domain in the plane [J].
Kelliher, James P. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2006, 38 (01) :210-232
[30]   On a shape control problem for the stationary Navier-Stokes equations [J].
Gunzburger, MD ;
Kim, H ;
Manservisi, S .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2000, 34 (06) :1233-1258