Graphene Field-Effect Transistors for In Vitro and Ex Vivo Recordings

被引:29
作者
Kireev, Dmitry [1 ]
Zadorozhnyi, Ihor [1 ]
Qiu, Tianyu [1 ]
Sarik, Dario [1 ]
Brings, Fabian [1 ]
Wu, Tianru [2 ]
Seyock, Silke [1 ]
Maybeck, Vanessa [1 ]
Lottner, Martin [3 ]
Blaschke, Benno M. [3 ]
Garrido, Jose [3 ,4 ]
Xie, Xiaoming [2 ]
Vitusevich, Svetlana [1 ]
Wolfrum, Bernhard [1 ,5 ]
Offenhaeusser, Andreas [1 ]
机构
[1] Forschungszentrum Julich, Inst Bioelect, D-52425 Julich, Germany
[2] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Funct Mat Informat, Shanghai 200050, Peoples R China
[3] Tech Univ Munich, Walter Schottky Inst, D-85748 Garching, Germany
[4] Univ Autonoma Barcelona, Catalan Inst Nanosci & Nanotechnol, Bellaterra 08193, Spain
[5] Tech Univ Munchen IMETUM, D-85748 Garching, Germany
关键词
Bioelectronics; ex vivo biosensor; electrophysiology; graphene; GFETs; in vitro biosensor; solution gating; MICROELECTRODE ARRAYS; CELLS;
D O I
10.1109/TNANO.2016.2639028
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recording extracellular potentials from electrogenic cells (especially neurons) is the hallmark destination of modern bioelectronics. While fabrication of flexible and biocompatible in vivo devices via silicon technology is complicated and time-consuming, graphene field-effect transistors (GFETs), instead, can easily be fabricated on flexible and biocompatible substrates. In this work, we compare GFETs fabricated on rigid (SiO2/Si and sapphire) and flexible (polyimide) substrates. The GFETs, fabricated on the polyimide, exhibit extremely large transconductance values, up to 11 mS. V-1, and mobility over 1750 cm(2) . V-1 .s(-1). In vitro recordings from cardiomyocyte-like cell culture are performed by GFETs on a rigid transparent substrate (sapphire). Via multichannel measurement, we are able to record and analyze both: difference in action potentials as well as their spatial propagation over the chip. Furthermore, the controllably flexible polyimide-on-steel (PIonS) substrates are able to ex vivo record electrical signals from primary embryonic rat heart tissue. Considering the flexibility of PIonS chips, together with the excellent sensitivity, we open up a new road into graphene-based in vivo biosensing.
引用
收藏
页码:140 / 147
页数:8
相关论文
共 47 条
  • [1] Advances in Complementary-Metal-Oxide-Semiconductor-Based Integrated Biosensor Arrays
    Arya, Sunil K.
    Wong, Chee Chung
    Jeon, Yong Joon
    Barisal, Tushar
    Park, Mi Kyoung
    [J]. CHEMICAL REVIEWS, 2015, 115 (11) : 5116 - 5158
  • [2] Tracking axonal action potential propagation on a high-density microelectrode array across hundreds of sites
    Bakkum, Douglas J.
    Frey, Urs
    Radivojevic, Milos
    Russell, Thomas L.
    Mueller, Jan
    Fiscella, Michele
    Takahashi, Hirokazu
    Hierlemann, Andreas
    [J]. NATURE COMMUNICATIONS, 2013, 4
  • [3] Optimized graphene transfer: Influence of polymethylmethacrylate (PMMA) layer concentration and baking time on graphene final performance
    Barin, Gabriela Bonin
    Song, Yi
    Gimenez, Iara de Fatima
    Souza Filho, Antonio Gomes
    Barretto, Ledjane Silva
    Kong, Jing
    [J]. CARBON, 2015, 84 : 82 - 90
  • [4] Purified Neurons can Survive on Peptide-Free Graphene Layers
    Bendali, Amel
    Hess, Lucas H.
    Seifert, Max
    Forster, Valerie
    Stephan, Anne-Fleur
    Garrido, Jose A.
    Picaud, Serge
    [J]. ADVANCED HEALTHCARE MATERIALS, 2013, 2 (07) : 929 - 933
  • [5] Flexible graphene transistors for recording cell action potentials
    Blaschke, Benno M.
    Lottner, Martin
    Drieschner, Simon
    Calia, Andrea Bonaccini
    Stoiber, Karolina
    Rousseau, Lionel
    Lissourges, Gaelle
    Garrido, Jose A.
    [J]. 2D MATERIALS, 2016, 3 (02):
  • [6] Electrochemical Gate-Controlled Charge Transport in Graphene in Ionic Liquid and Aqueous Solution
    Chen, Fang
    Qing, Quan
    Xia, Jilin
    Li, Jinghong
    Tao, Nongjian
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (29) : 9908 - +
  • [7] Intrinsic and extrinsic performance limits of graphene devices on SiO2
    Chen, Jian-Hao
    Jang, Chaun
    Xiao, Shudong
    Ishigami, Masa
    Fuhrer, Michael S.
    [J]. NATURE NANOTECHNOLOGY, 2008, 3 (04) : 206 - 209
  • [8] Flexible Solution-Gated Graphene Field Effect Transistor for Electrophysiological Recording
    Cheng, Ji
    Wu, Lei
    Du, Xiao-Wei
    Jin, Qing-Hui
    Zhao, Jian-Long
    Xu, Yuan-Sen
    [J]. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2014, 23 (06) : 1311 - 1317
  • [9] Sensitivity Limits and Scaling of Bioelectronic Graphene Transducers
    Cheng, Zengguang
    Hou, Junfeng
    Zhou, Qiaoyu
    Li, Tianyi
    Li, Hongbian
    Yang, Long
    Jiang, Kaili
    Wang, Chen
    Li, Yuanchang
    Fang, Ying
    [J]. NANO LETTERS, 2013, 13 (06) : 2902 - 2907
  • [10] Suspended Graphene Sensors with Improved Signal and Reduced Noise
    Cheng, Zengguang
    Li, Qiang
    Li, Zhongjun
    Zhou, Qiaoyu
    Fang, Ying
    [J]. NANO LETTERS, 2010, 10 (05) : 1864 - 1868