Hypercube estimators: Penalized least squares, submodel selection, and numerical stability

被引:0
|
作者
Beran, Rudolf [1 ]
机构
[1] Univ Calif Davis, Dept Stat, Davis, CA 95616 USA
关键词
Linear model; Condition number; Estimated risk; Submodel fits; Mean arrays; Multiple shrinkage; Spline fits; PENALTIES;
D O I
10.1016/j.csda.2013.05.020
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Hypercube estimators for the mean vector in a general linear model include algebraic equivalents to penalized least squares estimators with quadratic penalties and to submodel least squares estimators. Penalized least squares estimators necessarily break down numerically for certain penalty matrices. Equivalent hypercube estimators resist this source of numerical instability. Under conditions, adaptation over a class of candidate hypercube estimators, so as to minimize the estimated quadratic risk, also minimizes the asymptotic risk under the general linear model. Numerical stability of hypercube estimators assists trustworthy adaptation. Hypercube estimators have broad applicability to any statistical methodology that involves penalized least squares. Notably, they extend to general designs the risk reduction achieved by Stein's multiple shrinkage estimators for balanced observations on an array of means. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:654 / 666
页数:13
相关论文
共 50 条
  • [1] DIAGNOSTICS FOR PENALIZED LEAST-SQUARES ESTIMATORS
    EUBANK, RL
    GUNST, RF
    STATISTICS & PROBABILITY LETTERS, 1986, 4 (05) : 265 - 272
  • [2] Complexity penalized least squares estimators: Analytical results
    Wittich, O.
    Kempe, A.
    Winkler, G.
    Liebscher, V.
    MATHEMATISCHE NACHRICHTEN, 2008, 281 (04) : 582 - 595
  • [3] CONSISTENCIES AND RATES OF CONVERGENCE OF JUMP-PENALIZED LEAST SQUARES ESTIMATORS
    Boysen, Leif
    Kempe, Angela
    Liebscher, Volkmar
    Munk, Axel
    Wittich, Olaf
    ANNALS OF STATISTICS, 2009, 37 (01): : 157 - 183
  • [4] Misparametrization subsets for penalized least squares model selection
    Guyon X.
    Hardouin C.
    Statistical Inference for Stochastic Processes, 2014, 17 (3) : 283 - 294
  • [5] Knot selection for least-squares and penalized splines
    Spiriti, Steven
    Eubank, Randall
    Smith, Philip W.
    Young, Dennis
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2013, 83 (06) : 1020 - 1036
  • [6] Convergence Rates for Penalized Least Squares Estimators in PDE Constrained Regression Problems
    Nickl, Richard
    van de Geer, Sara
    Wang, Sven
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2020, 8 (01): : 374 - 413
  • [7] Variable selection in spatial regression via penalized least squares
    Wang, Haonan
    Zhu, Jun
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2009, 37 (04): : 607 - 624
  • [8] Improving Penalized Least Squares through Adaptive Selection of Penalty and Shrinkage
    Rudolf Beran
    Annals of the Institute of Statistical Mathematics, 2002, 54 : 900 - 917
  • [9] Improving penalized least squares through adaptive selection of penalty and shrinkage
    Beran, R
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2002, 54 (04) : 900 - 917
  • [10] Numerical methods for estimating the tuning parameter in penalized least squares problems
    Koukouvinos, Christos
    Lappa, Angeliki
    Mitrouli, Marilena
    Roupa, Paraskevi
    Turek, Ondrej
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (04) : 1542 - 1563