Research on Fault Diagnosis of Wind Turbine Based on SCADA Data

被引:35
|
作者
Liu, Yirong [1 ]
Wu, Zidong [2 ]
Wang, Xiaoli [1 ]
机构
[1] Shandong Univ, Sch Mech Elect & Informat Engn, Weihai 264209, Peoples R China
[2] Nari Technol Co Ltd, Nanjing 211106, Peoples R China
关键词
Wind turbines; Generators; Temperature distribution; Predictive models; Prediction algorithms; Fault diagnosis; Wind turbine; fault warning; eXtreme gradient boosting (XGBoost); exponentially weighted moving-average (EWMA); supervisory control and data acquisition (SCADA); CHINA;
D O I
10.1109/ACCESS.2020.3029435
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Effective early warning of wind turbine failures is of great significance to reduce the operation and maintenance costs of wind farms and improve power generation efficiency. At present, most wind farms are installed with supervisory control and data acquisition (SCADA) system, and SCADA data contains a lot of hidden information, which can be used for fault early warning. This paper uses the generator temperature and gearbox oil temperature in the SCADA data as the entry point for fault warning. Firstly, the eXtreme gradient boosting (XGBoost) algorithm is used to establish the normal temperature regression prediction model of wind turbine components. Then, the residual between the predicted value and the actual value is calculated, and the change trend of the residual is monitored by the principle of exponentially weighted moving-average (EWMA) control chart. Finally, by setting an appropriate threshold, the variation trend of the residual is judged to determine the occurrence and development of the fault. This paper uses two fault detection methods: fixed threshold and dynamic threshold based on adaptive algorithm, and compares the advantages and disadvantages of the two methods. Based on the SCADA data of a wind farm in Inner Mongolia (China), this paper designs the fault early warning test of the wind turbine generator and gearbox. The experimental results show that for the generator, the fixed fault threshold method can give the fault alarm 3 hours in advance, while the dynamic fault threshold determination method can give fault alarm 4.25 hours in advance. For gearbox, the fixed fault threshold method can give the fault alarm 2 hours in advance, while the dynamic threshold fault diagnosis method can send out the fault alarm 2.75 hours in advance.
引用
收藏
页码:185557 / 185569
页数:13
相关论文
共 50 条
  • [31] Research on the Fault Diagnosis of Wind Turbine Gearbox Based on Bayesian Networks
    Chen, Jigang
    Hao, Guowen
    PRACTICAL APPLICATIONS OF INTELLIGENT SYSTEMS, 2011, 124 : 217 - 223
  • [32] Research on Wind Turbine Gearbox Fault Diagnosis Based on CEEMDAN and CVFDT
    Shi, Fangzhou
    Yu, Jianghao
    Gu, Min
    Lei, Kai
    He, Jian
    2021 11TH INTERNATIONAL CONFERENCE ON POWER AND ENERGY SYSTEMS (ICPES 2021), 2021, : 713 - 717
  • [33] Research of local wind direction fluctuation characteristic and yaw control based on SCADA wind turbine data
    Guo, Peng
    Chen, Si
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2020, 41 (06): : 77 - 85
  • [34] A Spatio-Temporal Multiscale Neural Network Approach for Wind Turbine Fault Diagnosis With Imbalanced SCADA Data
    He, Qun
    Pang, Yanhua
    Jiang, Guoqian
    Xie, Ping
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (10) : 6875 - 6884
  • [35] Graph contrastive learning for semi-supervised wind turbine fault diagnosis with few labeled SCADA data
    Guo, Jie
    Liu, Changliang
    Liu, Shuai
    Liu, Weiliang
    MEASUREMENT, 2025, 245
  • [36] Online Wind Turbine Fault Detection through Automated SCADA Data Analysis
    Zaher, A.
    McArthur, S. D. J.
    Infield, D. G.
    Patel, Y.
    WIND ENERGY, 2009, 12 (06) : 574 - 593
  • [37] SCADA data as a powerful tool for early fault detection in wind turbine gearboxes
    Abd-Elwahab, Khaled Taha
    Hassan, Ali Ahmed
    WIND ENGINEERING, 2021, 45 (05) : 1317 - 1326
  • [38] Wind Turbine Fault Detection Using Highly Imbalanced Real SCADA Data
    Velandia-Cardenas, Cristian
    Vidal, Yolanda
    Pozo, Francesc
    ENERGIES, 2021, 14 (06)
  • [39] Fault diagnosis for wind turbine based on LightGBM
    Hu L.
    Jiang W.
    Li Y.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2021, 42 (11): : 255 - 259
  • [40] A General Method For The Diagnosis Of Wind Turbine Systematic Yaw Error Based Solely On SCADA Data
    Astolfi, D.
    Pasetti, M.
    Lombardi, A.
    Terzi, L.
    Girard, N.
    Poncet, P.
    Masson, J.
    Dieudegard, T.
    Castellani, F.
    SCIENCE OF MAKING TORQUE FROM WIND, TORQUE 2024, 2024, 2767