A nucleocytoplasmic malate dehydrogenase regulates p53 transcriptional activity in response to metabolic stress

被引:88
|
作者
Lee, S. M. [1 ]
Kim, J. H. [1 ]
Cho, E. J. [2 ]
Youn, H. D. [1 ]
机构
[1] Seoul Natl Univ, Natl Res Lab Metab Checkpoint, Canc Res Inst, Coll Med,Dept Biomed Sci & Biochem & Mol Biol, Seoul 110799, South Korea
[2] Sungkyunkwan Univ, Natl Res Lab Chromatin Dynam, Coll Pharm, Suwon 440746, South Korea
关键词
apoptosis; p53; malate dehydrogenase-1; metabolic checkpoint; transcriptional regulation; GENE-EXPRESSION; GLYCOLYTIC-ENZYMES; GLUCOSE-METABOLISM; MITOCHONDRIAL; INHIBITION; ACTIVATION; PATHWAYS; ISOFORM; COMPLEX; SYSTEM;
D O I
10.1038/cdd.2009.5
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Metabolic enzymes have been shown to function as transcriptional regulators. p53, a tumor-suppressive transcription factor, was recently found to regulate energy metabolism. These combined facts raise the possibility that metabolic enzymes may directly regulate p53 function. Here, we discover that nucleocytoplasmic malate dehydrogenase-1 (MDH1) physically associates with p53. Upon glucose deprivation, MDH1 stabilizes and transactivates p53 by binding to p53-responsive elements in the promoter of downstream genes. Knockdown of MDH1 significantly reduces binding of acetylated-p53 and transcription-active histone codes to the promoter upon glucose depletion. MDH1 regulates p53-dependent cell-cycle arrest and apoptosis in response to glucose deprivation, suggesting that MDH1 functions as a transcriptional regulator for a p53-dependent metabolic checkpoint. Our findings provide insight into how metabolism is directly linked to gene expression for controlling cellular events in response to metabolic stress.
引用
收藏
页码:738 / 748
页数:11
相关论文
共 50 条
  • [31] NEURL4 regulates the transcriptional activity of tumor suppressor protein p53 by modulating its oligomerization
    Cubillos-Rojas, Monica
    Schneider, Taiane
    Bartrons, Ramon
    Ventura, Francesc
    Luis Rosa, Jose
    ONCOTARGET, 2017, 8 (37) : 61824 - 61836
  • [32] The ribosomal protein S26 regulates p53 activity in response to DNA damage
    Cui, D.
    Li, L.
    Lou, H.
    Sun, H.
    Ngai, S-M
    Shao, G.
    Tang, J.
    ONCOGENE, 2014, 33 (17) : 2225 - 2235
  • [33] How phosphorylation regulates the activity of p53
    Steegenga, WT
    vanderEb, AJ
    Jochemsen, AG
    JOURNAL OF MOLECULAR BIOLOGY, 1996, 263 (02) : 103 - 113
  • [34] Pseudokinase Tribbles 1 (TRB1) Negatively Regulates Tumor-Suppressor Activity of p53 through p53 Deacetylation
    Miyajima, Chiharu
    Inoue, Yasumichi
    Hayashi, Hidetoshi
    BIOLOGICAL & PHARMACEUTICAL BULLETIN, 2015, 38 (04) : 618 - 624
  • [35] A molecular mechanism for the "digital" response of p53 to stress
    Safieh, Jessy
    Chazan, Ariel
    Saleem, Hanna
    Vyas, Pratik
    Danin-Poleg, Yael
    Ron, Dina
    Haran, Tali E.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2023, 120 (49)
  • [36] Synchronization in stress p53 network
    Devi, Gurumayum Reenaroy
    Alam, Md. Jahoor
    Singh, R. K. Brojen
    MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA, 2015, 32 (04): : 437 - 456
  • [37] Metabolic regulation by p53
    Maddocks, Oliver D. K.
    Vousden, Karen H.
    JOURNAL OF MOLECULAR MEDICINE-JMM, 2011, 89 (03): : 237 - 245
  • [38] p53 regulates the transcription of its Δ133p53 isoform through specific response elements contained within the TP53 P2 internal promoter
    Marcel, V.
    Vijayakumar, V.
    Fernandez-Cuesta, L.
    Hafsi, H.
    Sagne, C.
    Hautefeuille, A.
    Olivier, M.
    Hainaut, P.
    ONCOGENE, 2010, 29 (18) : 2691 - 2700
  • [39] Transcriptional inhibitors, p53 and apoptoss
    Gartel, Andrei L.
    BIOCHIMICA ET BIOPHYSICA ACTA-REVIEWS ON CANCER, 2008, 1786 (02): : 83 - 86
  • [40] p53 regulates katanin-p60 promoter in HCT 116 cells
    Kirimtay, Koray
    Selcuk, Ece
    Kelle, Dolunay
    Erman, Batu
    Karabay, Arzu
    GENE, 2020, 727