Partial differential equations on time scales

被引:52
作者
Ahlbrandt, CD [1 ]
Morian, C
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[2] Lincoln Univ, Dept Agr Nat Sci & Math, Jefferson City, MO 65102 USA
关键词
time scales; measure chains; delta derivatives; elliptic partial differential equations; Euler-Lagrange equation; Picone identity; Sturm-Picone comparison theorem;
D O I
10.1016/S0377-0427(01)00434-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Discrete and continuous formulations of partial differential operators are unified by a time scale formulation of partial differential operators. Results include an Euler-Lagrange equation for double integral variational problems on time scales and a Picone identity which implies a Sturm-Picone comparison theorem for second-order elliptic PDEs on time scales. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:35 / 55
页数:21
相关论文
共 21 条
  • [1] Agarwal R. P., 1999, RESULTS MATH, V35, P3, DOI [DOI 10.1007/BF03322019, 10.1007/BF03322019]
  • [2] Quadratic functionals for second order matrix equations on time scales
    Agarwal, RP
    Bohner, M
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 33 (07) : 675 - 692
  • [3] AGARWAL RP, 1999, DYNAMIC SYSTEMS APPL, V8, P307
  • [4] Ahlbrandt C.D., 1996, DISCRETE HAMILTONIAN
  • [5] Hamiltonian systems on time scales
    Ahlbrandt, CD
    Bohner, M
    Ridenhour, J
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 250 (02) : 561 - 578
  • [6] AHLBRANDT CD, 1998, J DIFFER EQUATIONS, V3, P449
  • [7] Akhiezer N. I., 1962, The calculus of variations
  • [8] [Anonymous], DIFFER EQU DYN SYST
  • [9] [Anonymous], REND MAT
  • [10] AULBACH B, 1990, MATH RES, V59, P9