Partial differential equations on time scales

被引:54
作者
Ahlbrandt, CD [1 ]
Morian, C
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[2] Lincoln Univ, Dept Agr Nat Sci & Math, Jefferson City, MO 65102 USA
关键词
time scales; measure chains; delta derivatives; elliptic partial differential equations; Euler-Lagrange equation; Picone identity; Sturm-Picone comparison theorem;
D O I
10.1016/S0377-0427(01)00434-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Discrete and continuous formulations of partial differential operators are unified by a time scale formulation of partial differential operators. Results include an Euler-Lagrange equation for double integral variational problems on time scales and a Picone identity which implies a Sturm-Picone comparison theorem for second-order elliptic PDEs on time scales. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:35 / 55
页数:21
相关论文
共 21 条
[1]  
Agarwal R. P., 1999, RESULTS MATH, V35, P3, DOI [DOI 10.1007/BF03322019, 10.1007/BF03322019]
[2]   Quadratic functionals for second order matrix equations on time scales [J].
Agarwal, RP ;
Bohner, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 33 (07) :675-692
[3]  
AGARWAL RP, 1999, DYNAMIC SYSTEMS APPL, V8, P307
[4]  
Ahlbrandt C.D., 1996, DISCRETE HAMILTONIAN
[5]   Hamiltonian systems on time scales [J].
Ahlbrandt, CD ;
Bohner, M ;
Ridenhour, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 250 (02) :561-578
[6]  
AHLBRANDT CD, 1998, J DIFFER EQUATIONS, V3, P449
[7]  
Akhiezer N. I., 1962, The calculus of variations
[8]  
[Anonymous], DIFFER EQU DYN SYST
[9]  
[Anonymous], REND MAT
[10]  
AULBACH B, 1990, MATH RES, V59, P9