A new scheme of causal viscous hydrodynamics for relativistic heavy-ion collisions: A Riemann solver for quark-gluon plasma

被引:23
作者
Akamatsu, Yukinao [1 ]
Inutsuka, Shu-ichiro [2 ]
Nonaka, Chiho [1 ,2 ]
Takamoto, Makoto [2 ,3 ]
机构
[1] Nagoya Univ, Kobayashi Maskawa Inst Origin Particles & Univers, Nagoya, Aichi 4648602, Japan
[2] Nagoya Univ, Dept Phys, Nagoya, Aichi 4648602, Japan
[3] Max Planck Inst Kernphys, D-69029 Heidelberg, Germany
关键词
Causal viscous hydrodynamics; Numerical hydrodynamics; Numerical dissipation; Riemann solver; Relativistic heavy-ion collision; Quark-gluon plasma; THERMODYNAMICS; NONSTATIONARY; DYNAMICS;
D O I
10.1016/j.jcp.2013.08.047
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this article, we present a state-of-the-art algorithm for solving the relativistic viscous hydrodynamics equation with the QCD equation of state. The numerical method is based on the second-order Godunov method and has less numerical dissipation, which is crucial in describing of quark-gluon plasma in high-energy heavy-ion collisions. We apply the algorithm to several numerical test problems such as sound wave propagation, shock tube and blast wave problems. In sound wave propagation, the intrinsic numerical viscosity is measured and its explicit expression is shown, which is the second-order of spatial resolution both in the presence and absence of physical viscosity. The expression of the numerical viscosity can be used to determine the maximum cell size in order to accurately measure the effect of physical viscosity in the numerical simulation. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:34 / 54
页数:21
相关论文
共 52 条
  • [1] The thermal model on the verge of the ultimate test: particle production in Pb-Pb collisions at the LHC
    Andronic, A.
    Braun-Munzinger, P.
    Redlich, K.
    Stachel, J.
    [J]. JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2011, 38 (12)
  • [2] Quark-gluon plasma and color glass condensate at RHIC?: The perspective from the BRAHMS experiment
    Arsene, I
    Bearden, IG
    Beavis, D
    Besliu, C
    Budick, B
    Boggild, H
    Chasman, C
    Christensen, CH
    Christiansen, P
    Cibor, J
    Debbe, R
    Enger, E
    Gaardhoje, JJ
    Germinario, M
    Hansen, O
    Holm, A
    Holme, AK
    Hagel, K
    Ito, H
    Jakobsen, E
    Jipa, A
    Jundt, F
    Jordre, JI
    Jorgensen, CE
    Karabowicz, R
    Kim, EJ
    Kozik, T
    Larsen, TM
    Lee, JH
    Lee, YK
    Lindahl, S
    Lovhoiden, G
    Majka, Z
    Makeev, A
    Mikelsen, M
    Murray, MJ
    Natowitz, J
    Neumann, B
    Nielsen, BS
    Ouerdane, D
    Planeta, R
    Rami, F
    Ristea, C
    Ristea, O
    Röhrich, D
    Samset, BH
    Sandberg, D
    Sanders, SJ
    Scheetz, RA
    Staszel, P
    [J]. NUCLEAR PHYSICS A, 2005, 757 (1-2) : 1 - 27
  • [3] Relativistic viscous hydrodynamics, conformal invariance, and holography
    Baier, Rudolf
    Romatschke, Paul
    Son, Dam Thanh
    Starinets, Andrei O.
    Stephanov, Mikhail A.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2008, (04):
  • [4] Complete second-order dissipative fluid dynamics
    Betz, B.
    Henkel, D.
    Rischke, D. H.
    [J]. JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2009, 36 (06)
  • [5] FLUX-CORRECTED TRANSPORT .1. SHASTA, A FLUID TRANSPORT ALGORITHM THAT WORKS
    BORIS, JP
    BOOK, DL
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1973, 11 (01) : 38 - 69
  • [6] Borsanyi S., 2010, J HIGH ENERGY PHYS, V1011, P077
  • [7] Fluctuations of conserved charges at finite temperature from lattice QCD
    Borsanyi, Szabolcs
    Fodor, Zoltan
    Katz, Sandor D.
    Krieg, Stefan
    Ratti, Claudia
    Szabo, Kalman
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2012, (01):
  • [8] Flow and interferometry in (3+1)-dimensional viscous hydrodynamics
    Bozek, Piotr
    [J]. PHYSICAL REVIEW C, 2012, 85 (03):
  • [9] Chaudhuri A.K., ARXIV08013180V2NUCLT
  • [10] Simulating elliptic flow with viscous hydrodynamics
    Dusling, K.
    Teaney, D.
    [J]. PHYSICAL REVIEW C, 2008, 77 (03):