FIBONACCI NUMBERS MODULO CUBES OF PRIMES

被引:10
作者
Sun, Zhi-Wei [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2013年 / 17卷 / 05期
基金
中国国家自然科学基金;
关键词
Fibonacci numbers; Central binomial coefficients; Congruences; Lucas sequences; CONGRUENCES; SUMS;
D O I
10.11650/tjm.17.2013.2488
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p be an odd prime. It is well known that Fp-(p/5) 0 (mod p), where {F-n}(n >= 0) is the Fibonacci sequence and (-) is the Jacobi symbol. In this paper we show that if p not equal 5 then we may determine Fp-(p/5) mod p(3) in the following way: Sigma((p-1)/2)(k=0) (2k k)/(-16)(k) (p/5) (1 + Fp-(p/5)/2) (mod p(3)). We also use Lucas quotients to determine Sigma((p-1)/2)(k=0) (2k k)/m(k) modulo p(2) for any integer m (sic) 0 (mod p); in particular, we obtain Sigma((p-1)/2)(k=0) (2k k)/16(k) = (3/p) (mod p(2)). In addition, we pose three conjectures for further research.
引用
收藏
页码:1523 / 1543
页数:21
相关论文
共 24 条
[1]  
Adamchuk A., 2007, ON LINE ENCY INTEGER
[2]  
[Anonymous], 1862, Quart. J. Pure Appl. Math
[3]  
[Anonymous], 1972, COMBINATORIAL IDENTI
[4]  
[Anonymous], 1994, FDN COMPUTER SCI
[5]   A search for Wieferich and Wilson primes [J].
Crandall, R ;
Dilcher, K ;
Pomerance, C .
MATHEMATICS OF COMPUTATION, 1997, 66 (217) :433-449
[6]  
Crandall R., 2005, Prime Numbers: A Computational Perspective, Vsecond
[7]  
Granville A, 2004, INTEGERS, V4
[8]   Some congruences involving central q-binomial coefficients [J].
Guo, Victor J. W. ;
Zeng, Jiang .
ADVANCES IN APPLIED MATHEMATICS, 2010, 45 (03) :303-316
[9]   Congruences for central binomial sums and finite polylogarithms [J].
Mattarei, Sandro ;
Tauraso, Roberto .
JOURNAL OF NUMBER THEORY, 2013, 133 (01) :131-157
[10]  
Morley F., 1895, Ann. Math, V9, P168, DOI DOI 10.2307/1967516