PRESENTING DISTRIBUTIVE LAWS

被引:7
作者
Bonsangue, Marcello M. [1 ,2 ]
Hansen, Helle H. [2 ,3 ]
Kurz, Alexander [4 ]
Rot, Jurriaan [1 ,2 ]
机构
[1] Leiden Univ, LIACS, NL-2300 RA Leiden, Netherlands
[2] Formal Methods Ctr Eiskunde & Informat, Amsterdam, Netherlands
[3] Delft Univ Technol, ESS TBM, NL-2600 AA Delft, Netherlands
[4] Univ Leicester, Dept Comp Sci, Leicester LE1 7RH, Leics, England
关键词
Coalgebra; algebra; distributive laws; abstract GSOS; monad; equational presentation; COINDUCTIVE CALCULUS; AUTOMATA;
D O I
10.2168/LMCS-11(3:2)2015
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Distributive laws of a monad T over a functor F are categorical tools for specifying algebra-coalgebra interaction. They proved to be important for solving systems of corecursive equations, for the specification of well-behaved structural operational semantics and, more recently, also for enhancements of the bisimulation proof method. If T is a free monad, then such distributive laws correspond to simple natural transformations. However, when T is not free it can be rather difficult to prove the defining axioms of a distributive law. In this paper we describe how to obtain a distributive law for a monad with an equational presentation from a distributive law for the underlying free monad. We apply this result to show the equivalence between two different representations of context-free languages.
引用
收藏
页数:23
相关论文
共 38 条
[1]  
Abou-Saleh F, 2013, LECT NOTES COMPUT SC, V7794, P129, DOI 10.1007/978-3-642-37075-5_9
[2]  
Aceto L., 2001, Handbook of Process Algebra, P197, DOI DOI 10.1016/B978-044482830-9/50021-7
[3]   Proving the validity of equations in GSOS languages using rule-matching bisimilarity [J].
Aceto, Luca ;
Cimini, Matteo ;
Ingolfsdottir, Anna .
MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2012, 22 (02) :291-331
[4]  
Adamek J., 2011, ALGEBRAIC THEORIES
[5]  
Adamek J., 2000, COMMENT MATH UNIV CA, V41, P529
[6]  
[Anonymous], 2004, THESIS
[7]  
Barr M., 2005, THEORY APPL CATEGORI
[8]   P-VARIETIES - A SIGNATURE INDEPENDENT CHARACTERIZATION OF VARIETIES OF ORDERED-ALGEBRAS [J].
BLOOM, SL ;
WRIGHT, JB .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1983, 29 (01) :13-58
[9]  
Bonsangue Marcello M., 2013, Algebra and Coalgebra in Computer Science. 5th International Conference, CALCO 2013. Proceedings: LNCS 8089, P95, DOI 10.1007/978-3-642-40206-7_9
[10]  
Borceux F., 1994, Handbook of Categorical Algebra: Basic Category Theory