Exponentially growing solutions in homogeneous Rayleigh-Benard convection

被引:56
作者
Calzavarini, E [1 ]
Doering, CR
Gibbon, JD
Lohse, D
Tanabe, A
Toschi, F
机构
[1] Univ Twente, Dept Appl Phys, NL-7500 AE Enschede, Netherlands
[2] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Michigan Ctr Theoret Phys, Ann Arbor, MI 48109 USA
[4] Univ London Imperial Coll Sci & Technol, Dept Math, London SW7 2AZ, England
[5] Ist Applicaz Calcolo, CNR, IAC, I-00161 Rome, Italy
[6] Ist Nazl Fis Nucl, I-43100 Parma, Italy
来源
PHYSICAL REVIEW E | 2006年 / 73卷 / 03期
关键词
D O I
10.1103/PhysRevE.73.035301
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
It is shown that homogeneous Rayleigh-Benard flow, i.e., Rayleigh-Benard turbulence with periodic boundary conditions in all directions and a volume forcing of the temperature field by a mean gradient, has a family of exact, exponentially growing, separable solutions of the full nonlinear system of equations. These solutions are clearly manifest in numerical simulations above a computable critical value of the Rayleigh number. In our numerical simulations they are subject to secondary numerical noise and resolution dependent instabilities that limit their growth to produce statistically steady turbulent transport.
引用
收藏
页数:4
相关论文
共 26 条
  • [1] Turbulent Convection Driven by a Constant Temperature Gradient
    Borue V.
    Orszag S.A.
    [J]. Journal of Scientific Computing, 1997, 12 (3) : 305 - 351
  • [2] Rayleigh and Prandtl number scaling in the bulk of Rayleigh-Benard turbulence
    Calzavarini, E
    Lohse, D
    Toschi, F
    Tripiccione, R
    [J]. PHYSICS OF FLUIDS, 2005, 17 (05) : 1 - 7
  • [3] Scaling and universality in turbulent convection
    Celani, A
    Matsumoto, T
    Mazzino, A
    Vergassola, M
    [J]. PHYSICAL REVIEW LETTERS, 2002, 88 (05) : 545031 - 545034
  • [4] Observation of the ultimate regime in Rayleigh-Benard convection
    Chavanne, X
    Chilla, F
    Castaing, B
    Hebral, B
    Chabaud, B
    Chaussy, J
    [J]. PHYSICAL REVIEW LETTERS, 1997, 79 (19) : 3648 - 3651
  • [5] Ultimate regime in Rayleigh-Benard convection:: The role of plates
    Chillà, F
    Rastello, M
    Chaumat, S
    Castaing, B
    [J]. PHYSICS OF FLUIDS, 2004, 16 (07) : 2452 - 2456
  • [6] Doering C. R., 1995, APPL ANAL NAVIER STO
  • [7] Variational bounds on energy dissipation in incompressible flows .3. Convection
    Doering, CR
    Constantin, P
    [J]. PHYSICAL REVIEW E, 1996, 53 (06): : 5957 - 5981
  • [8] GIBERT M, IN PRESS PHYS REV LE
  • [9] Evidence against 'ultrahard' thermal turbulence at very high Rayleigh numbers
    Glazier, JA
    Segawa, T
    Naert, A
    Sano, M
    [J]. NATURE, 1999, 398 (6725) : 307 - 310
  • [10] Scaling in thermal convection: a unifying theory
    Grossmann, S
    Lohse, D
    [J]. JOURNAL OF FLUID MECHANICS, 2000, 407 : 27 - 56