Application of Machine Learning and Grocery Transaction Data to Forecast Effectiveness of Beverage Taxation

被引:4
作者
Lu, Xing Han [1 ,2 ]
Mamiya, Hiroshi [1 ]
Vybihal, Joseph [2 ]
Ma, Yu [3 ]
Buckeridge, David L. [1 ]
机构
[1] McGill Univ, Surveillance Lab, McGill Clin & Hlth Informat, Montreal, PQ, Canada
[2] McGill Univ, Sch Comp Sci, Montreal, PQ, Canada
[3] McGill Univ, Desautels Fac Management, Montreal, PQ, Canada
来源
MEDINFO 2019: HEALTH AND WELLBEING E-NETWORKS FOR ALL | 2019年 / 264卷
关键词
Beverages; Machine learning; Public; SUBSIDIES; TAXES; FOOD;
D O I
10.3233/SHTI190221
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Sugar Sweetened Beverages (SSB) are the primary source of artificially added sugar and have a casual association with chronic diseases. Taxation of SSB has been proposed, but limited evidence exists to guide this public health policy. Grocery transaction data, with price, discounting and other information for beverage products, present an opportunity to evaluate the likely effects of taxation policy. Sales are often non-linearly associated with price and are affected by the prices of multiple competing brands. We evaluated the predictive performance of Boosted Decision Tree Regression (B-DTR) and Deep Neural Networks (DNN) that account for the non-linearity and competition across brands, and compared their performance to a benchmark regression, the Least Absolute Shrinkage and Selection Operator (LASSO). B-DTR and DNN showed a lower Mean Squared Error (MSE) of prediction in the sales of most major SSB brands in comparison to LASSO, indicating a superior accuracy in predicting the effectiveness of SSB taxation. We demonstrated the application of machine learning methods and large transactional data from grocery stores to forecast the effectiveness food taxation.
引用
收藏
页码:248 / 252
页数:5
相关论文
共 19 条
[1]  
Bajari P., 2015, Demand estimation with machine learning and model combination
[2]  
Bengio Yoshua, 2012, Neural Networks: Tricks of the Trade. Second Edition: LNCS 7700, P437, DOI 10.1007/978-3-642-35289-8_26
[3]  
Breiman L., 1984, CLASSIFICATION REGRE
[4]  
Drucker H., 1997, Icml, V97, P107
[5]   Evidence that a tax on sugar sweetened beverages reduces the obesity rate: a meta-analysis [J].
Escobar, Maria A. Cabrera ;
Veerman, J. Lennert ;
Tollman, Stephen M. ;
Bertram, Melanie Y. ;
Hofman, Karen J. .
BMC PUBLIC HEALTH, 2013, 13
[6]   Impact of the Berkeley Excise Tax on Sugar-Sweetened Beverage Consumption [J].
Falbe, Jennifer ;
Thompson, Hannah R. ;
Becker, Christina M. ;
Rojas, Nadia ;
McCulloch, Charles E. ;
Madsen, Kristine A. .
AMERICAN JOURNAL OF PUBLIC HEALTH, 2016, 106 (10) :1865-1871
[7]   Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013 [J].
Forouzanfar, Mohammad H. ;
Alexander, Lily ;
Anderson, H. Ross ;
Bachman, Victoria F. ;
Biryukov, Stan ;
Brauer, Michael ;
Burnett, Richard ;
Casey, Daniel ;
Coates, Matthew M. ;
Cohen, Aaron ;
Delwiche, Kristen ;
Estep, Kara ;
Frostad, Joseph J. ;
Astha, K. C. ;
Kyu, Hmwe H. ;
Moradi-Lakeh, Maziar ;
Ng, Marie ;
Slepak, Erica Leigh ;
Thomas, Bernadette A. ;
Wagner, Joseph ;
Aasvang, Gunn Marit ;
Abbafati, Cristiana ;
Ozgoren, Ayse Abbasoglu ;
Abd-Allah, Foad ;
Abera, Semaw F. ;
Aboyans, Victor ;
Abraham, Biju ;
Abraham, Jerry Puthenpurakal ;
Abubakar, Ibrahim ;
Abu-Rmeileh, Niveen M. E. ;
Aburto, Tania C. ;
Achoki, Tom ;
Adelekan, Ademola ;
Adofo, Koranteng ;
Adou, Arsene K. ;
Adsuar, Jose C. ;
Afshin, Ashkan ;
Agardh, Emilie E. ;
Al Khabouri, Mazin J. ;
Al Lami, Faris H. ;
Alam, Sayed Saidul ;
Alasfoor, Deena ;
Albittar, Mohammed I. ;
Alegretti, Miguel A. ;
Aleman, Alicia V. ;
Alemu, Zewdie A. ;
Alfonso-Cristancho, Rafael ;
Alhabib, Samia ;
Ali, Raghib ;
Ali, Mohammed K. .
LANCET, 2015, 386 (10010) :2287-2323
[8]  
Glorot X., 2010, P 13 INT C ART INT S, V9, P249
[9]  
Glorot X., 2011, P 14 INT C ART INT S, P315
[10]   Resolved: there is sufficient scientific evidence that decreasing sugar-sweetened beverage consumption will reduce the prevalence of obesity and obesity-related diseases [J].
Hu, F. B. .
OBESITY REVIEWS, 2013, 14 (08) :606-619