Identifying the optimum composition in organic solar cells comprising non-fullerene electron acceptors

被引:25
作者
Wolfer, Pascal [1 ]
Schwenn, Paul E. [1 ]
Pandey, Ajay K. [1 ]
Fang, Yuan [1 ]
Stingelin, Natalie [2 ,3 ]
Burn, Paul L. [1 ]
Meredith, Paul [1 ]
机构
[1] Univ Queensland, Ctr Organ Photon & Elect, St Lucia, Qld 4072, Australia
[2] Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2AZ, England
[3] Univ London Imperial Coll Sci Technol & Med, Ctr Plast Elect, London SW7 2AZ, England
基金
瑞士国家科学基金会; 欧洲研究理事会;
关键词
LOW-BANDGAP POLYMERS; EUTECTIC CRYSTALLIZATION; CONVERSION EFFICIENCY; PHOTOVOLTAIC BLENDS; MORPHOLOGY; HETEROJUNCTIONS; DIIMIDES; NETWORK; SYSTEMS;
D O I
10.1039/c3ta10554g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We explore the inter-relationship between the phase behavior and photovoltaic performance for two blend systems comprising poly(3-n-hexylthiophene-2,5-diyl) (P3HT) as the electron donating moiety and two newly developed small molecule non-fullerene electron acceptors. Binary non-equilibrium temperature/composition phase diagrams of the two systems are prepared from differential scanning calorimetry (DSC) thermograms of blends of different compositions. The phase behavior is correlated with the optoelectronic performance of corresponding binaries in bulk heterojunction (BHJ) solar cells. The thermal and optoelectronic blend characterization is supported with optical microscopy and specular X-ray diffraction (sXRD) experiments. For both electron-accepting compounds the composition yielding the maximum photocurrent generation in devices was found to be in the hypoeutectic regime, i.e. at compositions that are shifted from the eutectic towards the small molecule rich region in the phase diagrams. We demonstrate that measuring the thermal properties of the blends is useful for rapid component ratio optimization and the evaluation of unexplored materials combinations.
引用
收藏
页码:5989 / 5995
页数:7
相关论文
共 35 条
[1]  
[Anonymous], 1899, Z PHYS CHEM
[2]   n-Type Organic Semiconductors in Organic Electronics [J].
Anthony, John E. ;
Facchetti, Antonio ;
Heeney, Martin ;
Marder, Seth R. ;
Zhan, Xiaowei .
ADVANCED MATERIALS, 2010, 22 (34) :3876-3892
[3]   Solution-Processed Organic Solar Cells with Power Conversion Efficiencies of 2.5% using Benzothiadiazole/Imide-Based Acceptors [J].
Bloking, Jason T. ;
Han, Xu ;
Higgs, Andrew T. ;
Kastrop, John P. ;
Pandey, Laxman ;
Norton, Joseph E. ;
Risko, Chad ;
Chen, Cynthia E. ;
Bredas, Jean-Luc ;
McGehee, Michael D. ;
Sellinger, Alan .
CHEMISTRY OF MATERIALS, 2011, 23 (24) :5484-5490
[4]   Processable Low-Bandgap Polymers for Photovoltaic Applications [J].
Boudreault, Pierre-Luc T. ;
Najari, Ahmed ;
Leclerc, Mario .
CHEMISTRY OF MATERIALS, 2011, 23 (03) :456-469
[5]   Strain and Huckel Aromaticity: Driving Forces for a Promising New Generation of Electron Acceptors in Organic Electronics [J].
Brunetti, F. G. ;
Gong, X. ;
Tong, M. ;
Heeger, A. J. ;
Wudl, Fred .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (03) :532-536
[6]   Development of Novel Conjugated Donor Polymers for High-Efficiency Bulk-Heterojunction Photovoltaic Devices [J].
Chen, Junwu ;
Cao, Yong .
ACCOUNTS OF CHEMICAL RESEARCH, 2009, 42 (11) :1709-1718
[8]   A Narrow Optical Gap Small Molecule Acceptor for Organic Solar Cells [J].
Fang, Yuan ;
Pandey, Ajay K. ;
Nardes, Alexandre M. ;
Kopidakis, Nikos ;
Burn, Paul L. ;
Meredith, Paul .
ADVANCED ENERGY MATERIALS, 2013, 3 (01) :54-59
[9]   Multicomponent semiconducting polymer systems with low crystallization-induced percolation threshold [J].
Goffri, Shalom ;
Mueller, Christian ;
Stingelin-Stutzmann, Natalie ;
Breiby, Dag W. ;
Radano, Christopher P. ;
Andreasen, Jens W. ;
Thompson, Richard ;
Janssen, Rene A. J. ;
Nielsen, Martin M. ;
Smith, Paul ;
Sirringhaus, Henning .
NATURE MATERIALS, 2006, 5 (12) :950-956
[10]   Dye-sensitized solar cells [J].
Grätzel, M .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS, 2003, 4 (02) :145-153