Irregularity of Distribution in Wasserstein Distance

被引:8
|
作者
Graham, Cole [1 ]
机构
[1] Stanford Univ, Dept Math, 450 Jane Stanford Way,Bldg 380, Stanford, CA 94305 USA
关键词
Irregularity of distribution; Optimal transport; Wasserstein distance;
D O I
10.1007/s00041-020-09786-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the non-uniformity of probability measures on the interval and circle. On the interval, we identify the Wasserstein-p distance with the classical L-p-discrepancy. We thereby derive sharp estimates in Wasserstein distances for the irregularity of distribution of sequences on the interval and circle. Furthermore, we prove an L-p-adapted Erdos-Turan inequality, and use it to extend a well-known bound of Polya and Vinogradov on the equidistribution of quadratic residues in finite fields.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Multivariate goodness-of-fit tests based on Wasserstein distance
    Hallin, Marc
    Mordant, Gilles
    Segers, Johan
    ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (01): : 1328 - 1371
  • [42] On a Linear Gromov-Wasserstein Distance
    Beier, Florian
    Beinert, Robert
    Steidl, Gabriele
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 7292 - 7305
  • [43] MULTI-VIEW WASSERSTEIN DISCRIMINANT ANALYSIS WITH ENTROPIC REGULARIZED WASSERSTEIN DISTANCE
    Kasai, Hiroyuki
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 6039 - 6043
  • [44] Approximation algorithms for 1-Wasserstein distance between persistence diagrams
    Chen, Samantha
    Wang, Yusu
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2025, 129
  • [45] The Gromov-Wasserstein Distance Between Spheres
    Arya, Shreya
    Auddy, Arnab
    Clark, Ranthony A.
    Lim, Sunhyuk
    Memoli, Facundo
    Packer, Daniel
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2024,
  • [46] Unsupervised Graph Alignment with Wasserstein Distance Discriminator
    Gao, Ji
    Huang, Xiao
    Li, Jundong
    KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 426 - 435
  • [47] Distributionally robust insurance under the Wasserstein distance
    Boonen, Tim J.
    Jiang, Wenjun
    INSURANCE MATHEMATICS & ECONOMICS, 2025, 120 : 61 - 78
  • [48] Minimax confidence intervals for the Sliced Wasserstein distance
    Manole, Tudor
    Balakrishnan, Sivaraman
    Wasserman, Larry
    ELECTRONIC JOURNAL OF STATISTICS, 2022, 16 (01): : 2252 - 2345
  • [49] Partial ordered Wasserstein distance for sequential data
    Doan, Tung
    Phan, Tuan
    Nguyen, Phu
    Than, Khoat
    Visani, Muriel
    Takasu, Atsuhiro
    NEUROCOMPUTING, 2024, 595
  • [50] EULERIAN CALCULUS FOR THE DISPLACEMENT CONVEXITY IN THE WASSERSTEIN DISTANCE
    Daneri, Sara
    Savare, Giuseppe
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 40 (03) : 1104 - 1122