Irregularity of Distribution in Wasserstein Distance

被引:8
|
作者
Graham, Cole [1 ]
机构
[1] Stanford Univ, Dept Math, 450 Jane Stanford Way,Bldg 380, Stanford, CA 94305 USA
关键词
Irregularity of distribution; Optimal transport; Wasserstein distance;
D O I
10.1007/s00041-020-09786-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the non-uniformity of probability measures on the interval and circle. On the interval, we identify the Wasserstein-p distance with the classical L-p-discrepancy. We thereby derive sharp estimates in Wasserstein distances for the irregularity of distribution of sequences on the interval and circle. Furthermore, we prove an L-p-adapted Erdos-Turan inequality, and use it to extend a well-known bound of Polya and Vinogradov on the equidistribution of quadratic residues in finite fields.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Towards Inverse Modeling of Landscapes Using the Wasserstein Distance
    Morris, M. J.
    Lipp, A. G.
    Roberts, G. G.
    GEOPHYSICAL RESEARCH LETTERS, 2023, 50 (14)
  • [22] Hyperbolic Wasserstein Distance for Shape Indexing
    Shi, Jie
    Wang, Yalin
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (06) : 1362 - 1376
  • [23] Wasserstein distance, Fourier series and applications
    Steinerberger, Stefan
    MONATSHEFTE FUR MATHEMATIK, 2021, 194 (02): : 305 - 338
  • [24] ESTIMATING PROCESSES IN ADAPTED WASSERSTEIN DISTANCE
    Backhoff, Julio
    Bartl, Daniel
    Beiglbock, Mathias
    Wiesel, Johannes
    ANNALS OF APPLIED PROBABILITY, 2022, 32 (01): : 529 - 550
  • [25] An Empirical Study of Self-Supervised Learning with Wasserstein Distance
    Yamada, Makoto
    Takezawa, Yuki
    Houry, Guillaume
    Dusterwald, Kira Michaela
    Sulem, Deborah
    Zhao, Han
    Tsai, Yao-Hung
    ENTROPY, 2024, 26 (11)
  • [26] SQUARED QUADRATIC WASSERSTEIN DISTANCE: OPTIMAL COUPLINGS AND LIONS DIFFERENTIABILITY
    Alfonsi, Aurelien
    Jourdain, Benjamin
    ESAIM-PROBABILITY AND STATISTICS, 2020, 24 : 703 - 717
  • [27] Wasserstein distance, Fourier series and applications
    Stefan Steinerberger
    Monatshefte für Mathematik, 2021, 194 : 305 - 338
  • [28] Explainable AI Using the Wasserstein Distance
    Chaudhury, Shion Samadder
    Sadhukhan, Payel
    Sengupta, Kausik
    IEEE ACCESS, 2024, 12 : 18087 - 18102
  • [29] On quantum versions of the classical Wasserstein distance
    Agredo, J.
    Fagnola, F.
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC REPORTS, 2017, 89 (6-7): : 910 - 922
  • [30] Structure preservation via the Wasserstein distance
    Bartl, Daniel
    Mendelson, Shahar
    JOURNAL OF FUNCTIONAL ANALYSIS, 2025, 288 (07)