Irregularity of Distribution in Wasserstein Distance

被引:9
作者
Graham, Cole [1 ]
机构
[1] Stanford Univ, Dept Math, 450 Jane Stanford Way,Bldg 380, Stanford, CA 94305 USA
关键词
Irregularity of distribution; Optimal transport; Wasserstein distance;
D O I
10.1007/s00041-020-09786-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the non-uniformity of probability measures on the interval and circle. On the interval, we identify the Wasserstein-p distance with the classical L-p-discrepancy. We thereby derive sharp estimates in Wasserstein distances for the irregularity of distribution of sequences on the interval and circle. Furthermore, we prove an L-p-adapted Erdos-Turan inequality, and use it to extend a well-known bound of Polya and Vinogradov on the equidistribution of quadratic residues in finite fields.
引用
收藏
页数:21
相关论文
共 39 条
[31]   THE EXISTENCE OF PROBABILITY-MEASURES WITH GIVEN MARGINALS [J].
STRASSEN, V .
ANNALS OF MATHEMATICAL STATISTICS, 1965, 36 (02) :423-439
[32]  
Vallender S. S., 1974, THEOR PROBAB APPL, V18, P784, DOI DOI 10.1137/1118101
[33]  
van Aardenne-Ehrenfest T., 1945, NEDERL AKAD WETENSCH, V48, P266
[34]  
van der Corput JG, 1935, P K AKAD WET-AMSTERD, V38, P813
[35]  
van der Corput JG, 1935, P K AKAD WET-AMSTERD, V38, P1058
[36]  
Villani C., 2003, Topics in Optimal Transportation
[37]  
Vinogradov IM, 1919, J SOC PHYS MATH U PE, V2, P1
[38]  
ZINTERHOF P., 1976, osterr. Akad. Wiss. Math.-Naturwiss. Kl. S.-B, VII, P121
[39]  
Zinterhof P., 1978, STUD SCI MATH HUNG, V13, P273