Irregularity of Distribution in Wasserstein Distance

被引:9
作者
Graham, Cole [1 ]
机构
[1] Stanford Univ, Dept Math, 450 Jane Stanford Way,Bldg 380, Stanford, CA 94305 USA
关键词
Irregularity of distribution; Optimal transport; Wasserstein distance;
D O I
10.1007/s00041-020-09786-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the non-uniformity of probability measures on the interval and circle. On the interval, we identify the Wasserstein-p distance with the classical L-p-discrepancy. We thereby derive sharp estimates in Wasserstein distances for the irregularity of distribution of sequences on the interval and circle. Furthermore, we prove an L-p-adapted Erdos-Turan inequality, and use it to extend a well-known bound of Polya and Vinogradov on the equidistribution of quadratic residues in finite fields.
引用
收藏
页数:21
相关论文
共 39 条
[1]  
[Anonymous], 1981, Recent progress in analytic number theory
[2]  
[Anonymous], 2011, Unif. Distrib. Theory
[3]  
BECK J., 1987, IRREGULARITIES DISTR
[4]  
Benamou JD, 2000, NUMER MATH, V84, P375, DOI 10.1007/s002119900117
[5]  
Brown L., 2020, T AM MATH SOC
[6]   ON IRREGULARITIES OF DISTRIBUTION [J].
CHEN, WWL .
MATHEMATIKA, 1980, 27 (54) :153-170
[7]  
Davenport H, 2000, MULTIPLICATIVE NUMBE, P3
[8]  
Davenport H., 1956, MATHEMATIKA, V3, P131, DOI DOI 10.1112/S0025579300001807
[9]   FAST TRANSPORT OPTIMIZATION FOR MONGE COSTS ON THE CIRCLE [J].
Delon, Julie ;
Salomon, Julien ;
Sobolevski, Andrei .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2010, 70 (07) :2239-2258
[10]  
Erd o P., 1948, Ned. Akad. Wet., V51, P1262