Period Doubling Cascades in a Predator-Prey Model with a Scavenger

被引:40
作者
Previte, Joseph P. [1 ]
Hoffman, Kathleen A. [2 ]
机构
[1] Penn State Univ, Behrend Coll, Sch Sci, Erie, PA 16563 USA
[2] UMBC, Dept Math & Stat, Baltimore, MD 21250 USA
关键词
cascades; scavenger; bistability; Lotka-Volterra equations; LOTKA-VOLTERRA SYSTEMS; FOOD-CHAIN; DIFFERENTIAL-EQUATIONS; STRANGE ATTRACTORS; GLOBAL STABILITY; LIMIT-CYCLES; CHAOS; DYNAMICS; OMNIVORY; COMPETITION;
D O I
10.1137/110825911
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The dynamics of the classic planar two-species Lotka-Volterra predator-prey model are well understood. We introduce a scavenger species that scavenges the predator and is also a predator of the common prey. For this model, we analytically prove that all trajectories are bounded in forward time, and numerically demonstrate persistent bounded paired cascades of period-doubling orbits over a wide range of parameter values. Standard analytical and numerical techniques are used in the analysis of this model, making it an ideal pedagogical tool. We include exercises and an open-ended project to promote mastery of these techniques.
引用
收藏
页码:523 / 546
页数:24
相关论文
共 60 条
[1]  
AIKEN R C, 1973, International Journal of Systems Science, V4, P691, DOI 10.1080/00207727308920049
[2]  
[Anonymous], 2004, Fundamentals of Ecology
[3]  
[Anonymous], 1931, ANIMAL ECOLOGY
[4]  
[Anonymous], 2007, DIFFERENTIAL DYNAMIC
[5]  
[Anonymous], 1991, INT J BIFURCAT CHAOS
[6]  
[Anonymous], 1991, INT J BIFURCAT CHAOS, DOI [10.1142/S0218127491000397, DOI 10.1142/S0218127491000397]
[7]   Intraguild predation: a widespread interaction related to species biology [J].
Arim, M ;
Marquet, PA .
ECOLOGY LETTERS, 2004, 7 (07) :557-564
[8]   STRANGE ATTRACTORS IN VOLTERRA-EQUATIONS FOR SPECIES IN COMPETITION [J].
ARNEODO, A ;
COULLET, P ;
PEYRAUD, J ;
TRESSER, C .
JOURNAL OF MATHEMATICAL BIOLOGY, 1982, 14 (02) :153-157
[9]   OCCURRENCE OF STRANGE ATTRACTORS IN 3 DIMENSIONAL VOLTERRA-EQUATIONS [J].
ARNEODO, A ;
COULLET, P ;
TRESSER, C .
PHYSICS LETTERS A, 1980, 79 (04) :259-263
[10]   BIFURCATION FROM A LIMIT-CYCLE IN A 2 PREDATOR ONE PREY ECOSYSTEM MODELED ON A CHEMOSTAT [J].
BUTLER, GJ ;
WALTMAN, P .
JOURNAL OF MATHEMATICAL BIOLOGY, 1981, 12 (03) :295-310