Duality for the Jordanian matrix quantum group GL(g,h)(2)

被引:16
作者
Aneva, BL [1 ]
Dobrev, VK [1 ]
Mihov, SG [1 ]
机构
[1] INT CTR THEORET PHYS,I-34100 TRIESTE,ITALY
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1997年 / 30卷 / 19期
关键词
D O I
10.1088/0305-4470/30/19/016
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We find the Hopf algebra U-g,U-h dual to the Jordanian matrix quantum group GL(g,h)(2). As an algebra it depends only on the sum of the two parameters and is split into two subalgebras:U-g,U-h' (with three generators) and U(Z) (with one generator). The subalgebra U(Z) is a central Hopf subalgebra of U-g,U-h. The subalgebra U-g,U-h' is not a Hopf subalgebra and its co-algebra structure depends on both parameters. We discuss also two one-parameter special cases: g = h and g = -h. The subalgebra U-h,U-h' is a Hopf algebra and coincides with the algebra introduced by Ohn as the dual of SLh(2). The subalgebra U--h,U-h' is isomorphic to U(s/(2)) as an algebra but has a nontrivial co-algebra structure and again Is not a Hopf subalgebra of U--h,U-h.
引用
收藏
页码:6769 / 6781
页数:13
相关论文
共 25 条
[1]   Irreducible representations of Jordanian quantum algebra U-h(s1(2)) via a nonlinear map [J].
Abdesselam, B ;
Chakrabarti, A ;
Chakrabarti, R .
MODERN PHYSICS LETTERS A, 1996, 11 (36) :2883-2891
[3]   Universal R-matrix for non-standard quantum sl(2,R) [J].
Ballesteros, A ;
Herranz, FJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (13) :L311-L316
[4]   NONSTANDARD QUANTUM SO(2,2) AND BEYOND [J].
BALLESTEROS, A ;
HERRANZ, FJ ;
DELOLMO, MA ;
SANTANDER, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (04) :941-955
[5]   TENSOR REPRESENTATION OF THE QUANTUM GROUP SLQ(2,C) AND QUANTUM MINKOWSKI SPACE [J].
CAROWWATAMURA, U ;
SCHLIEKER, M ;
SCHOLL, M ;
WATAMURA, S .
ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1990, 48 (01) :159-165
[6]  
DEMIDOV EE, 1990, PROG THEOR PHYS SUPP, P203, DOI 10.1143/PTPS.102.203
[7]  
Dobrev V. K., 1996, P 10 INT C PROBL QUA, P104
[8]   DUALITY FOR THE MATRIX QUANTUM GROUP GLP,Q(2,C) [J].
DOBREV, VK .
JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (10) :3419-3430
[9]   DUALITY FOR MULTIPARAMETRIC QUANTUM GL(N) [J].
DOBREV, VK ;
PARASHAR, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (23) :6991-7002
[10]   DUALITY FOR A LORENTZ QUANTUM GROUP [J].
DOBREV, VK ;
PARASHAR, P .
LETTERS IN MATHEMATICAL PHYSICS, 1993, 29 (04) :259-269