Maskless Lithography and in situ Visualization of Conductivity of Graphene using Helium Ion Microscopy

被引:36
作者
Iberi, Vighter [1 ]
Vlassiouk, Ivan [2 ]
Zhang, X. -G. [1 ,3 ,4 ]
Matola, Brad [1 ]
Linn, Allison [1 ]
Joy, David C. [1 ,5 ]
Rondinone, Adam J. [1 ]
机构
[1] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
[2] Oak Ridge Natl Lab, Energy & Transportat Sci, Oak Ridge, TN 37831 USA
[3] Univ Florida, Dept Phys, Gainesville, FL 32611 USA
[4] Univ Florida, Quantum Theory Project, Gainesville, FL 32611 USA
[5] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
关键词
MODEL;
D O I
10.1038/srep11952
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The remarkable mechanical and electronic properties of graphene make it an ideal candidate for next generation nanoelectronics. With the recent development of commercial-level single-crystal graphene layers, the potential for manufacturing household graphene-based devices has improved, but significant challenges still remain with regards to patterning the graphene into devices. In the case of graphene supported on a substrate, traditional nanofabrication techniques such as e-beam lithography (EBL) are often used in fabricating graphene nanoribbons but the multi-step processes they require can result in contamination of the graphene with resists and solvents. In this letter, we report the utility of scanning helium ion lithography for fabricating functional graphene nanoconductors that are supported directly on a silicon dioxide layer, and we measure the minimum feature size achievable due to limitations imposed by thermal fluctuations and ion scattering during the milling process. Further we demonstrate that ion beams, due to their positive charging nature, may be used to observe and test the conductivity of graphene-based nanoelectronic devices in situ.
引用
收藏
页数:7
相关论文
共 15 条
[1]   Patterning, Characterization, and Chemical Sensing Applications of Graphene Nanoribbon Arrays Down to 5 nm Using Helium Ion Beam Lithography [J].
Abbas, Ahmad N. ;
Liu, Gang ;
Liu, Bilu ;
Zhang, Luyao ;
Liu, He ;
Ohlberg, Douglas ;
Wu, Wei ;
Zhou, Chongwu .
ACS NANO, 2014, 8 (02) :1538-1546
[2]   Nonlocal plate model for free vibrations of single-layered graphene sheets [J].
Ansari, R. ;
Sahmani, S. ;
Arash, B. .
PHYSICS LETTERS A, 2010, 375 (01) :53-62
[3]   Precision cutting and patterning of graphene with helium ions [J].
Bell, D. C. ;
Lemme, M. C. ;
Stern, L. A. ;
RWilliams, J. ;
Marcus, C. M. .
NANOTECHNOLOGY, 2009, 20 (45)
[4]   Graphene nano-ribbon electronics [J].
Chen, Zhihong ;
Lin, Yu-Ming ;
Rooks, Michael J. ;
Avouris, Phaedon .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2007, 40 (02) :228-232
[5]   Spatially Resolved Mapping of Electrical Conductivity across Individual Domain (Grain) Boundaries in Graphene [J].
Clark, Kendal W. ;
Zhang, X. -G. ;
Vlassiouk, Ivan V. ;
He, Guowei ;
Feenstra, Randall M. ;
Li, An-Ping .
ACS NANO, 2013, 7 (09) :7956-7966
[6]  
Joy DC, 2013, SPRINGERBRIEF MATER, P1, DOI 10.1007/978-1-4614-8660-2
[7]   Etching of Graphene Devices with a Helium Ion Beam [J].
Lemme, Max C. ;
Bell, David C. ;
Williams, James R. ;
Stern, Lewis A. ;
Baugher, Britton W. H. ;
Jarillo-Herrero, Pablo ;
Marcus, Charles M. .
ACS NANO, 2009, 3 (09) :2674-2676
[8]   Conductance quantization and transport gaps in disordered graphene nanoribbons [J].
Mucciolo, E. R. ;
Castro Neto, A. H. ;
Lewenkopf, C. H. .
PHYSICAL REVIEW B, 2009, 79 (07)
[9]   A model of secondary electron imaging in the helium ion scanning microscope [J].
Ramachandra, Ranjan ;
Griffin, Brendan ;
Joy, David .
ULTRAMICROSCOPY, 2009, 109 (06) :748-757
[10]   Vibrational analysis of single-layered graphene sheets [J].
Sakhaee-Pour, A. ;
Ahmadian, M. T. ;
Naghdabadi, R. .
NANOTECHNOLOGY, 2008, 19 (08)