EXISTENCE AND PERMANENCE OF ALMOST PERIODIC SOLUTIONS FOR LESLIE-GOWER PREDATOR-PREY MODEL WITH VARIABLE DELAYS

被引:0
作者
Zhang, Tianwei [1 ]
Gan, Xiaorong [1 ]
机构
[1] Kunming Univ Sci & Technol, City Coll, Kunming 650051, Peoples R China
关键词
Variable delay; permanence; almost periodicity; Leslie-Gower model; HOPF-BIFURCATION; STABILITY; SYSTEM; EQUATIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By constructing a suitable Lyapunov functional and using almost periodic functional hull theory, we study the almost periodic dynamic behavior of a discrete Leslie-Gower predator-prey model with constant and variable delays. Based on the permanence result, sufficient conditions are established for the existence and uniqueness of globally attractive almost periodic solution. A example and a numerical simulation are given to illustrate the our results.
引用
收藏
页数:21
相关论文
共 29 条
[1]   Convergence results in a well-known delayed predator-prey system [J].
Beretta, E ;
Kuang, Y .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 204 (03) :840-853
[2]   Global analyses in some delayed ratio-dependent predator-prey systems [J].
Beretta, E ;
Kuang, Y .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 32 (03) :381-408
[3]   Permanence for the discrete mutualism model with time delays [J].
Chen, Fengde .
MATHEMATICAL AND COMPUTER MODELLING, 2008, 47 (3-4) :431-435
[4]  
Cushing J. M., 2013, Integrodifferential Equations and Delay Models in Population Dynamics, DOI DOI 10.1007/978-3-642-93073-7
[5]   Periodic solutions of a discrete time nonautonomous ratio-dependent predator-prey system [J].
Fan, M ;
Wang, K .
MATHEMATICAL AND COMPUTER MODELLING, 2002, 35 (9-10) :951-961
[6]   NORMAL FORMS FOR RETARDED FUNCTIONAL-DIFFERENTIAL EQUATIONS AND APPLICATIONS TO BOGDANOV-TAKENS SINGULARITY [J].
FARIA, T ;
MAGALHAES, LT .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 122 (02) :201-224
[7]  
GOPALSAMY K, 1984, J AUST MATH SOC B, V25, P473, DOI 10.1017/S0334270000004227
[8]  
GOPALSAMY K, 1983, B MATH BIOL, V45, P295, DOI 10.1016/S0092-8240(83)80058-5
[9]  
Gopalsamy K., 2013, STABILITY OSCILLATIO, V74
[10]   Stable periodic solution of the discrete periodic Leslie-Gower predator-prey model [J].
Huo, HF ;
Li, WT .
MATHEMATICAL AND COMPUTER MODELLING, 2004, 40 (3-4) :261-269